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• Given
– A model of a physical system such as a spacecraft

– The actions taken and observations received thus far

• Determine
– The most likely states of the system

– The commands needed to move to a desirable state(not covered here)

Problem Statement

CommandObservations

Configuration Goals
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Model-Based Diagnosis

Model-based diagnosis implements diagnosis as constraint optimization

Constraint problem:

•Assumption Variables
Assumption variables represent our assumptions about the state of the components of the device

•Observation Variables
Observations represent the quantities that are observed from the environment (eg sensor values)

•Dependent Variables
Dependent variables represent other quantities that allow us to conveniently model how the
assumptions and observations are related

•Constraints
Constraints model the behavior of the device’s components and determine what combinations of
values of the variables are allowed

Task:

Find best assumptions that are consistent with observations & constraints



| Constraints and variable definitions
|
| | Assignments to non-assumption variables
| |

\/ \/
+----------------+ +----------------+
| database | <----Assignment to assumptions ------ |search procedure|
+----------------+ ---- Consistency flag---------------> +----------------+

| /\
| Assignments | Consistency flag

\/ |
+---------------------+
| consistency checker |
+---------------------+

Schematic of Generic Constraint-Based
Diagnoser



Helium tank
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Oxidizer tank

Conflict from observation
Flow1 = zero
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Conflict Example



| Logical constraints involving equality, and finite domain variables
|
| | Assignments to non-assumption variables
| |

\/ \/
+----------------+ +----------------+
| database | <----Assignment to assumptions ------ |conflict-based |
| | ---- Conflicts ---------------------> |search procedure|
| conflicts | | |
+----------------+ ---- Consistency flag---------------> +----------------+

| /\
| Assignments | Consistency fla g & a co nflict if any

\/ |
+---------------------+
| consistency checker |
+---------------------+

Finite Domain Diagnosis with Conflicts



+-----------------------+
| User or theory reader |
+-----------------------+

|
| Create finite domain of {value_1, value_2, ... value_n}
| Create dependent, assignable or assumption variable
| Create constraint between variables
| Assign variable=value
| find_candidates
|

\/
+--------------------+ +--------------------------------+
| CONFLICT DB |<----- Assign assumptions ------------ | |
| | | |
| clause-> value map |<---+- Check consistency ------------|conflict-based search procedure |
| | +- Consistency flag -------------> | |
| cmd->transition map| | |
|--------------------|<--+- get_conflicts ------------------| |
| conflict store | +---- Variable value conflicts --> | |
+--------------------+ +--------------------------------+

| /\
| |
| +---------------------------------------+
| |
| Create proposition, Create Clause |
| |
| Add clause , Delete clause , Propagate, Find Conflict | C onsistency flag , Conflicting clauses if any
| |
\/ |

+-------------------------------------------------------------------------+
| TMS: A propositional consistency checker with truth maintenance ability |
+-------------------------------------------------------------------------+

Finite Domain Diagnosis
Implementation (non Temporal)



Adding Time

• State constraints are quite easy to represent propositionally
Valve=closedÿ Flow=zero

• How can we represent stochastic transitions?

Cmdin=open

stuck
Flow=zero

closed
Flow=zero

open
Flow≈Pressure

Cmdin=close

• Introduce choice variableτ to capture stochasticity
• P(τvalve=nominal) is the prior that Nature makes that choice

Valve=closed & CmdIn=open &τvalve=nominalÿ next(Valve=open)
τvalve=stickÿ next(Valve=stuck)

Value P(τ=Value)
nominal α
stick 1−α

τvalve=stickτvalve=stick

& τvalve=nominal

& τvalve=nominal

Prior Probabilities



Building a One Step Model
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Progressing the Model
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• The assignments toτ capture every possible trajectory

• Trajectories can be enumerated in prior probability order
P(trajectory) =Σ P(τ assignment)

• Each trajectory can be checked for agreement with observations



Naive Tracking Solution

• To track then most likely trajectories
– for t=0; t != ∞ ; t++

• Create full copy of the model for the new time step t

• Assign command and observation variables

• Find best t-length trajectories

• Report the t-length trajectories



Truncation
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+-----------------------+
| User or theory reader |
+-----------------------+

|
| Create finite domain of {value_1, value_2, ... value_n}
| Create dependent, assignable or assumption variable
| Create constraint between variables
| Assign variable=value , find_candidates
|
| Temporal: Create dependent, command or observable variable
| Create transitioned variable & corresponding assumption
| Create transition clause between time steps for transitioned variable
| progress , truncate_history

\/
+--------------------+ +--------------------------------+
| T_SYSTEM | <---- Assign assumptions ------------ | |
| | <--+- Check consistency ------------| |
| clause-> value map | +- Consistency flag -------------> |conflict-based search procedure |
| | <--+- get_conflicts ----------------| |
| cmd->transition map| +---- Variable value conflicts --> | |
|--------------------| +--------------------------------+
| conflict store |
+--------------------+

| /\
| +-------------------------------------------+
| Create proposition, Create Clause |
| Add clause , Delete clause , Propagate Find conflict | C onsistency flag , Conflicting clauses if any
| |
| For Progress: move_support |
| For truncate: add_summary_clause , remove_theory | Summarizing clause
| |

\/ |
+--------------------------------------------------------------------------+
| TMS: A propositional consistency checker with truth maintenance ability |
+--------------------------------------------------------------------------+

Finite Domain Diagnosis
Implementation (Temporal)



Important Implementation Ideas

• Search layer
– How conflict-based searches work

• T_system layer
– How min progress works
– How truncation works

• Conflict_db layer
– How it maps between variables & values to propositions & clauses

• Unique value clauses
• Make assignment var=value -> add unit clause “var=value”

• TMS layer
– How unit propagation works
– How it knows where the conflict is

• MBA Utils Layer
– How memory management works



Backing Slides



Min Progress
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• Proven a conservative approximation
– Does not discard any consistent trajectories but allows some “imposters”
– Imposter trajectories should be knocked out by future observation stream
– Could also implement a quick soundness check

• How can we distinguish a failure at timet from one att-1?
– An inconsistent observation or transmission of a command through a device

• Intuition: Merge timest andt-1 for inactive devices



Complete Representation
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Search Algorithms



Desired Properties

• Let P be the probability of the most likely consistent trajectory

• Track all consistent trajectories of probability P

• Little computation as long as a trajectory of P remains consistent

• If no trajectories of P, track all trajectories at next probability level

• Focused search that avoids “obviously wrong” trajectories



Focusing on Consistent
Trajectories

cmdin

Flowv1

Flowv2

cmdout

t=0

vdu
τvdu

off

on

closedv1

zero

τv2
zero

closed

t=1

open

zero

zero

t=2

high

high

τv1

v2

nom

nom

nom

nom nom

nom

on

open
closed

closed

open

open

none

on

none
none

Observe: Flowv1= zero
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Observe: Flowv2=zero
noGood = {τvdu,0=nom,τv2,1=nom,τv2,0=nom}

zero

zero

• A nogood is a partial assignment that predicts an observation
other than what is observed

• MBD insight: Consistent assignments contain no nogoods

• Consistent trajectories are those that differ from every nogood



Hitting Sets

• Recall noGood set from the example:
{ {τvdu,0=nom,τv1,1=nom,τv1,0=nom}, {τvdu,0=nom,τv2,1=nom,τv2,0=nom}}

• Suppose we want to find alln-way failures
Actual algorithm is more sophisticated, this is easier to explain

• Choosen of theτ variables such that assigning them
failure values covers all noGoods

• NP-hardhitting set problem

• Strategy: compute hitting set, finding alln-way covers
(trajectories), then check for consistency against model

• Increasen when non-failure trajectories are consistent



Procedure CoverTrack (trajectories,n, conflictDB)
extend model one time step, addingτ variables
extend existing trajectories byτ=nominal
loop {

check consistency of trajectories, adding to conflictDB
if one or more trajectories are still consistent,

return them
else

n= n +1
trajectories = hittingSet(conflictDB,n);

}
• Tracks alln-failure trajectories (paper is more sophisticated)
• If n does not need to be increased, little work is done

Conflict Coverage Search



Focusing on Consistent Trajectories
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