
Rough Overview of L2 Code Base

7/27/01

• Given
– A model of a physical system such as a spacecraft

– The actions taken and observations received thus far

• Determine
– The most likely states of the system

– The commands needed to move to a desirable state(not covered here)

Problem Statement

CommandObservations

Configuration Goals

Model
State

Estimate
Action

Selection

Model-Based Diagnosis

Model-based diagnosis implements diagnosis as constraint optimization

Constraint problem:

•Assumption Variables
Assumption variables represent our assumptions about the state of the components of the device

•Observation Variables
Observations represent the quantities that are observed from the environment (eg sensor values)

•Dependent Variables
Dependent variables represent other quantities that allow us to conveniently model how the
assumptions and observations are related

•Constraints
Constraints model the behavior of the device’s components and determine what combinations of
values of the variables are allowed

Task:

Find best assumptions that are consistent with observations & constraints

| Constraints and variable definitions
|
| | Assignments to non-assumption variables
| |

\/ \/
+----------------+ +----------------+
| database | <----Assignment to assumptions ------ |search procedure|
+----------------+ ---- Consistency flag---------------> +----------------+

| /\
| Assignments | Consistency flag

\/ |
+---------------------+
| consistency checker |
+---------------------+

Schematic of Generic Constraint-Based
Diagnoser

Helium tank

Fuel tank

Oxidizer tank

Conflict from observation
Flow1 = zero

Helium tank

Main
Engines

Fuel tank

Oxidizer tank

Conflict from observations
Pressure1 = nominal
Pressure2 = nominal
Acceleration = zero

Conflict Example

| Logical constraints involving equality, and finite domain variables
|
| | Assignments to non-assumption variables
| |

\/ \/
+----------------+ +----------------+
database	<----Assignment to assumptions ------	conflict-based
	---- Conflicts --------------------->	search procedure
conflicts		
+----------------+ ---- Consistency flag---------------> +----------------+

| /\
| Assignments | Consistency fla g & a co nflict if any

\/ |
+---------------------+
| consistency checker |
+---------------------+

Finite Domain Diagnosis with Conflicts

+-----------------------+
| User or theory reader |
+-----------------------+

|
| Create finite domain of {value_1, value_2, ... value_n}
| Create dependent, assignable or assumption variable
| Create constraint between variables
| Assign variable=value
| find_candidates
|

\/
+--------------------+ +--------------------------------+
CONFLICT DB	<----- Assign assumptions ------------	
clause-> value map	<---+- Check consistency ------------	conflict-based search procedure
	+- Consistency flag ------------->	
cmd->transition map		
--------------------	<--+- get_conflicts ------------------	
conflict store	+---- Variable value conflicts -->	
+--------------------+ +--------------------------------+

| /\
| |
| +---------------------------------------+
| |
| Create proposition, Create Clause |
| |
| Add clause , Delete clause , Propagate, Find Conflict | C onsistency flag , Conflicting clauses if any
| |
\/ |

+---+
| TMS: A propositional consistency checker with truth maintenance ability |
+---+

Finite Domain Diagnosis
Implementation (non Temporal)

Adding Time

• State constraints are quite easy to represent propositionally
Valve=closedÿ Flow=zero

• How can we represent stochastic transitions?

Cmdin=open

stuck
Flow=zero

closed
Flow=zero

open
Flow≈Pressure

Cmdin=close

• Introduce choice variableτ to capture stochasticity
• P(τvalve=nominal) is the prior that Nature makes that choice

Valve=closed & CmdIn=open &τvalve=nominalÿ next(Valve=open)
τvalve=stickÿ next(Valve=stuck)

Value P(τ=Value)
nominal α
stick 1−α

τvalve=stickτvalve=stick

& τvalve=nominal

& τvalve=nominal

Prior Probabilities

Building a One Step Model

Time t

vdu

τvdu

off

cmdin open

closedv1

Flowv1 zero

τv2

Flowv2 zero

closed

Time t+1

τv1

cmdout

v2

none

Pump

Valve
Driver

V
1

V
2

cmdin

Flowv1

Flowv2

Interconnections

Cmdin=open

stuck
Flow=zero

closed
Flow=zero

open
Flow≈Pressure

Cmdin=close

τvalve=stickτvalve=stick

& τvalve=nominal

& τvalve=nominal

Valve Automaton

τvdu=hang

Cmdin=on &τvdu=nominal

hung
Cmdout=none

off
Cmdout=none

on
Cmdout=CmdIn

Cmdin=off & τvdu=nominal

τvdu=hang

VDU Automaton

Propositional
Constraint System

???

???

???

Progressing the Model

t=0

vdu

τvdu

off

cmdin on

closedv1

Flowv1 zero

τv2

Flowv2 zero

closed

t=1

open

zero

zero

t=2

high

high

τv1

cmdout

v2

nom

nom

nom

nom nom

nom

on

open

closed

closed

open

open

none

on

none

none

t=0

vdu

τvdu

off

cmdin on

closedv1

Flowv1 zero

τv2

Flowv2 zero

closed

t=1

open

t=2

none

τv1

cmdout

v2

none

• The assignments toτ capture every possible trajectory

• Trajectories can be enumerated in prior probability order
P(trajectory) =Σ P(τ assignment)

• Each trajectory can be checked for agreement with observations

Naive Tracking Solution

• To track then most likely trajectories
– for t=0; t != ∞ ; t++

• Create full copy of the model for the new time step t

• Assign command and observation variables

• Find best t-length trajectories

• Report the t-length trajectories

Truncation

vdu
τvdu

off

on

closedv1

zero

τv2 zero

closed

open

zero

zero

zero

zero

τv1

v2

nom

nom

nom

nom

Stick

on

open
closed

closed

stuck

stuck

none

on

none
none

Flowv2

Flowv1

cmdin
cmdout

Stick

t=0

vdu
τvdu

off

on

closedv1

zero

τv2 zero

closed

t=1

open

zero

zero

t=2

zero

zero

τv1

v2

Hang

nom

nom

nom nom

nom

Hung

open
closed

closed

closed

closed

none

Hung

none
none

Flowv2

Flowv1

cmdin
cmdout

vdu
τvdu

v1

τv2

zero

zero

τv1

v2

Hang

open

open

Hung

none
none

Flowv2

Flowv1

cmdin

History

cmdout

vdu
τvdu

v1

τv2

zero

zero

τv1

v2

stuck

stuck

on

none
none

Flowv2

Flowv1

cmdin

2StickHistory
cmdout

P(History=hang)=P(τvdu=hang)

P(History=2stick)=

P(τv1=stuck)*P(τv1=stuck)

+-----------------------+
| User or theory reader |
+-----------------------+

|
| Create finite domain of {value_1, value_2, ... value_n}
| Create dependent, assignable or assumption variable
| Create constraint between variables
| Assign variable=value , find_candidates
|
| Temporal: Create dependent, command or observable variable
| Create transitioned variable & corresponding assumption
| Create transition clause between time steps for transitioned variable
| progress , truncate_history

\/
+--------------------+ +--------------------------------+
T_SYSTEM	<---- Assign assumptions ------------	
	<--+- Check consistency ------------	
clause-> value map	+- Consistency flag ------------->	conflict-based search procedure
	<--+- get_conflicts ----------------	
cmd->transition map	+---- Variable value conflicts -->	
--------------------	+--------------------------------+	
conflict store		
+--------------------+

| /\
| +---+
| Create proposition, Create Clause |
| Add clause , Delete clause , Propagate Find conflict | C onsistency flag , Conflicting clauses if any
| |
| For Progress: move_support |
| For truncate: add_summary_clause , remove_theory | Summarizing clause
| |

\/ |
+--+
| TMS: A propositional consistency checker with truth maintenance ability |
+--+

Finite Domain Diagnosis
Implementation (Temporal)

Important Implementation Ideas

• Search layer
– How conflict-based searches work

• T_system layer
– How min progress works
– How truncation works

• Conflict_db layer
– How it maps between variables & values to propositions & clauses

• Unique value clauses
• Make assignment var=value -> add unit clause “var=value”

• TMS layer
– How unit propagation works
– How it knows where the conflict is

• MBA Utils Layer
– How memory management works

Backing Slides

Min Progress

Present
t=0

vdu
τvdu

off

on

v1

τv2

closed

closed

τv1

v2

on

Flowv2

Flowv1

cmdin
cmdout

t=0
Present

t=1
vdu
τvdu

off

on

v1

τv2

off

τv1

v2

offon

Flowv2

Flowv1

cmdin
cmdout

closed

closed

closed

closed

t=0 t=1
Present

t=2
vdu
τvdu

off

on

v1

τv2

off

τv1

v2

offon
on
on

Flowv2

Flowv1

cmdin
cmdout

closed

closed

closed

closed

• Proven a conservative approximation
– Does not discard any consistent trajectories but allows some “imposters”
– Imposter trajectories should be knocked out by future observation stream
– Could also implement a quick soundness check

• How can we distinguish a failure at timet from one att-1?
– An inconsistent observation or transmission of a command through a device

• Intuition: Merge timest andt-1 for inactive devices

Complete Representation

Flowv1

cmdin

History

off

close

open

high

high

open

off

zero

zero

zero

zero

nom

nom

nom

nom

nom

on

off
closed

closed

closed

closed

close

off

τv1

vdu
τvdu

v1

τv2

v2

Flowv2

cmdout

nom

open

closed

closed

nom

nom

open

open

open

nom

off on

on

nom

nom

closed

closed

hung

reset

hung

nom

nom

nom

nom

Gross
Approximation

Complete
Model

Conservative
Approximation Time

Present

Variables

Search Algorithms

Desired Properties

• Let P be the probability of the most likely consistent trajectory

• Track all consistent trajectories of probability P

• Little computation as long as a trajectory of P remains consistent

• If no trajectories of P, track all trajectories at next probability level

• Focused search that avoids “obviously wrong” trajectories

Focusing on Consistent
Trajectories

cmdin

Flowv1

Flowv2

cmdout

t=0

vdu
τvdu

off

on

closedv1

zero

τv2
zero

closed

t=1

open

zero

zero

t=2

high

high

τv1

v2

nom

nom

nom

nom nom

nom

on

open
closed

closed

open

open

none

on

none
none

Observe: Flowv1= zero
noGood = {τvdu,0=nom,τv1,1=nom,τv1,0=nom}

Observe: Flowv2=zero
noGood = {τvdu,0=nom,τv2,1=nom,τv2,0=nom}

zero

zero

• A nogood is a partial assignment that predicts an observation
other than what is observed

• MBD insight: Consistent assignments contain no nogoods

• Consistent trajectories are those that differ from every nogood

Hitting Sets

• Recall noGood set from the example:
{ {τvdu,0=nom,τv1,1=nom,τv1,0=nom}, {τvdu,0=nom,τv2,1=nom,τv2,0=nom}}

• Suppose we want to find alln-way failures
Actual algorithm is more sophisticated, this is easier to explain

• Choosen of theτ variables such that assigning them
failure values covers all noGoods

• NP-hardhitting set problem

• Strategy: compute hitting set, finding alln-way covers
(trajectories), then check for consistency against model

• Increasen when non-failure trajectories are consistent

Procedure CoverTrack (trajectories,n, conflictDB)
extend model one time step, addingτ variables
extend existing trajectories byτ=nominal
loop {

check consistency of trajectories, adding to conflictDB
if one or more trajectories are still consistent,

return them
else

n= n +1
trajectories = hittingSet(conflictDB,n);

}
• Tracks alln-failure trajectories (paper is more sophisticated)
• If n does not need to be increased, little work is done

Conflict Coverage Search

Focusing on Consistent Trajectories

cmdin

Flowv1

Flowv2

cmdout

t=0

vdu
τvdu

off

on

closedv1

zero

τv2
zero

closed

t=1

open

zero

zero

t=2

high

high

τv1

v2

nom

nom

nom

nom nom

nom

on

open
closed

closed

open

open

none

on

none
none

Observe: Flowv1= zero
noGood = {τvdu,0=nom,τv1,1=nom,τv1,0=nom}

Observe: Flowv2=zero
noGood = {τvdu,0=nom,τv2,1=nom,τv2,0=nom}

t=0

vdu
τvdu

off

on

closedv1

zero

τv2 zero

closed

t=1

open

zero

zero

t=2

zero

zero

τv1

v2

Hang

nom

nom

nom nom

nom

Hung

open
closed

closed

closed

closed

none

Hung

none
none

Flowv2

Flowv1

cmdin
cmdout

t=0 t=1 t=2
vdu
τvdu

off

on

closedv1

zero

τv2 zero

closed

open

zero

zero

zero

zero

τv1

v2

nom

nom

nom

nom

Stick

on

open
closed

closed

stuck

stuck

none

on

none
none

Flowv2

Flowv1

cmdin
cmdout

Stick

CBFS

zero

zero

