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Gregory Harbaugh in training

for STS-39

Sergei Krikalev and Yuri Gidzenko
aboard the ISS

Adaptation to cultural diversity

Isolation
— Lack of access to family and friends
— Lack of normal leisure pursuits

Time — intensive workloads
Stress
Monotony of stimuli, including food

Nutritional impacts

— Boredom with food, resulting in less
eating

— Skipping meals, dependence on
snacking

— Poor appetite

ychological/Behavioral/Performance Issues




Astronaut selection — refinement of

the psychological evaluation

Training to improve teamwork and
adaptation to environment
Support from family/friends and ; Y |
prOfGSSionaI Support International members 01; the

Self-assessment tools ISS Expedition 2 crew
Food

More variety in textures and taste

Resupply with fresh foods, especially
fruits and vegetables

Frozen foods — taste similar to home
cooking

Celebrations and party foods

Loren J. Shriver on STS-46

chological/Behavioral/Performance Issues
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Inability to maintain stable eye level | & i
Problems with gait and balance b
upon return to Earth

Nutritional impacts
— Space motion sickness (SMS)

= Nausea
* Decreased food consumption ' F &
= Dehydration "ol

Mltlgat|0n Astrohaut John Glenn

performing balance tests

— Preflight nutritional counseling to (1964)
assure optimal nutritional status

— Physical training and countermeasures to prevent SMS

Neurosensory Adaptations
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* Anecdotal data
— Foods reportedly taste differently
— Limited packaging odors in foods
— Spacecraft has ambient odors

e Research

— Little research has shown measurable
changes in taste (ground and
spaceflight) or odor (ground)

— Two studies done on Skylab and by Canadian Space Agency on
changes in taste (ground and spaceflight) and odor (ground)

e Mitigation
— Supply frozen foods on the International Space Station to
simulate home cooking
— Include fresh foods
— Improve ambient-storage foods, e.g., irradiated meats

ISS Expedition | crew Yuri Gidzenko,
Bill Shepherd, and Sergei Krikalev

Taste and Odor Sensitivity
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Loss of Body Fluids
Lack of Thirst — Dehydration

Effect on Cardiovascular Function
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Measurement Method

Total Body Water
(TBW)

Plasma Volume CO-rebreath-calculated”

1251.albumin

Evans Blue

Extracellular Fluid

(ECF) NaBr

“Calculated from the hemoglobin values.

12 From: H. Lane and D. Schoeller, 2000. Fluid Shifts
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From: H. Lane and D. Schoeller, 2000. Fluid Shifts
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ardioasar datations

e Microgravity induces orthostatic
Intolerance in 75% of crews

e Dysrhythmia

— Evidence of some susceptibility to
dysrhythmias, but no statistical differences
from incidences of age-related populations
on Earth

— Underlying mechanism being studied

Cardiovascular Adaptations
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David Low on STS-43

* Landing day
— 1 plasma norepinephrine
— 1 peripheral vascular pressure
— 1 systolic pressure
— 1 heart rate

* |n flight

— Without aerobic exercise,
deconditioning exercise, treadmill
or bike, crew cannot maintain
cardiovascular conditioning

— Fluid intake below 2000 ml/day —
dehydration

Cardiovascular Adaptations
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* Preflight e Subjects (n = 25) who

m Postflight performed identical work
rates before and after flight
demonstrated increased
cardiovascular stress by an
Increased heart rate, with no
change in VO,, within each
exercise stage on landing day
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Decreased exercise tolerance
affects musculoskeletal health
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17  From: M. Greenison, et al., 1999. Cardiovascular Adaptations
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Fluid intake

— Prevent dehydration, especially
with increased exercise

— Data suggest thirst is lacking

Fluid loading prior to landing to
counter orthostatic intolerance

— Sodium/water
Potassium

— Encourage consumption of
potassium-containing foods

Exercise
— Provide nutritional support

Expedition 2 crew

Cardiovascular Adaptations
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Energy expenditure is the same during spaceflight as on Earth.
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Preflight In flight

20 From: H. Lane and D. Schoeller, 2000. Energy Metabolism and Muscle Changes
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* Energy intake is lower than expected

e Suboptimal energy intake
— 1 protein turnover
— | body weight and muscle mass
— | de novo muscle protein synthesis

Expenditure NIEUE

21 From: H. Lane and D. Schoeller, 2000. Energy Metabolism and Muscle Changes
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Mir Crew Members

5 -
In-Flight Energy Intake Postflight Weight Loss
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From: Smith et al., 2000. Energy Metabolism and Muscle Changes
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23 From: T. Stein, et al., 1996. Energy Metabolism and Muscle Changes
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Protein synthesis
decreased as the
estimated energy
deficit increased

after more than

3 months on Mir.
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24 From: T. Stein, et al., 1999. Energy Metabolism and Muscle Changes
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25  From: T. Stein, et al., 1998. Energy Metabolism and Muscle Changes
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Synthesis and breakdown both decrease and have a larger
negative balance at Day 28.
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26 From: H. Lane and D. Schoeller, 2000. Energy Metabolism and Muscle Changes




sad asBES

Muscles experience deconditioning and decreased leg
volume due to inability to load muscles in microgravity.

% Change

MESCIE (flight vs. preflight)

Calf Changes in muscle
_ R volume of 4 astronauts,
Lol R measured 1 day after
Soleus+Gastroc -6.3 + 0.62 an 8-day Space Shuttle
Thigh mission
Quadriceps -6.0 + 1.7°
Hamstrings -8.0 + 0.92

Lumbar ap<0.05
. bp<0.07 versus preflight
Intrinsic -10.3 + 2.44

Psoas -3.1+1.5

27  From: H. Lane and D. Schoeller, 2000. ergy Metabolism and Muscle Changes
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e How to achieve adequate energy intake

— Data suggest inadequate energy intake may limit
effectiveness of resistive exercise

— Monitor dietary intake with computerized food
frequency counts

e Decreases in leg muscle volume and strength

— International Space Station has resistive exercise
device that can load major muscle groups

Energy Metabolism and Muscle Changes
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 Further research questions
— Effectiveness of resistive exercise

— Role of nutrition for muscles
» Glucose/amino acid supplements

= Interaction of endocrine changes (elevated cortisol)
and protein metabolism

— Understanding the relationship of muscle
energy metabolism and muscle function

e Artificial gravity
— Intermittent
— Ground-based

Energy Metabolism and Muscle Changes
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e Maintenance of bone
— Bone resorption = formation

e Spaceflight conditions induce

loss of bone
— Abone resorption
— Abone formation

e Solution
— Reduce resorption with medical
alendronate

— Maintain formation
= Heavy resistive exercise

= Maintain nutrient needs
« Vitamin D supplementation
» Adequate vitamins and minerals (Ca, Mg, vitamin K) for bone




Bone Mineral Density
(% loss/month)

Lumbar spine 1.1+0.6
Femur neck 1.2+0.9
Trochanter 1.6 +1.0
Pelvis 1.4+0.5

Legs 0.3+0.3
Whole body 0.4+0.3

Data is from long-duration flight.
N = 16-18 crew members )

Spaceflight

Postflight

32 From: H. Lane and D. Schoeller, 2000.
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Postflight
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| | | |
Preflight FD110 R+0 R+9 R>75

R = recovery day

33 From: Smith, et al Bone Changes
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Biochemical and Endocrine Markers

25-Hydroxyvitamin D

Postflight
A

1,25-Dihydroxyvitamin D

Postflight
|
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FD14 FD110 R+0 R+9 R>75

M Subject 1
A Subject 2
® Subject 3

From: Smith, et al., 1999.
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FD14 FD110 R+0 R+9 R>75

FD = flight day
R = recovery day

Bone Changes
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This Euromir 95 study of undercarboxylated
osteocalcin involved one German astronaut.
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35 From: Caillot-Augusseau, et al., 2000. Bone Changes




e Nutritional considerations

— Preflight, Russia tour — low 25-OH vitamin D,
blood levels

— In flight — no light source for vitamin D synthesis

— In flight — dietary vitamin D limited to fish oil or
supplements

— Preflight — vitamin K status unknown

— In flight — dietary vitamin K levels unknown

— Bone health, vitamin K, and vitamin D status
monitored pre- and postflight > diet counseling

Bone Changes
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 Research
— Role of excessive dietary sodium

— Role of elevated urinary Ca with
dehydration on Ca oxalate formation

— Needed bed rest studies to simulate
microgravity for effects of vitamin K
e Mitigation
— Role of heavy resistive exercise

— Alendronate-bisphosphate — issues of
side effects

— Weight-bearing exercise with treadmill S —

— Vitamin D added to cereals, exoroioing o STe.44
dehydrated milk, instant breakfast

Bone Changes
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Nutrition to ass

Microgravity
Mission duration

Mission destination
Remote environment

hitiating Factors

» Inadequate nutritional intake due t0
* Poor availability
» Lack of knowledge of nutrition
* Poor food system
* Reduced thirst and appetite

» Psychological/social issues
» lonizing radiation exposure
» Failure of countermeasures

» Microbial and chemical contamination of food

Malnutrition/Bone loss/Renal stone risk/Dehydration/

Muscle wasting/Carcinogenesis/Infectious disease/
Reduced immunity/Food-borne illness/Hematological

changes/Inability to perform/Inability to rehabilitate/DNA damage

RUERNCES

39 From: H. Lane and D. Schoeller, 2000. Ultimate Nutrition Questions
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 What lies beyond our planet?

— Develop microgravity tools to
probe fundamental questions of
science

= the role of gravity In
physical/chemical systems

= extraterrestrial life
= the origins of the universe
— Research ways to enable humans to explore for

scientific and technological advances, as well as for
benefits to humankind

* The international community is forging the first step to
answer this question with the International Space
Station




JanjDavis on STS-47

Helen W. Laneﬂ

helen.w.lanel
@jsc.nasa.gov

Summary of U.S. Nutrition Research. Lane HW and
Schoeller DA. Nutrition in Spaceflight and Weightlessness
Models. CRC Press: Boca Raton FL, USA, 2000.




dditionass neration

Food Technology Commercial Space Center - i
http://www.ag.lastate.edu/centers/ftcsc/

Advanced Life Support Program
http://advlifesupport.;jsc.nasa.gov/

NASA research opportunities
http://peerl.nasaprs.com/peer review/nra/nra.htmi

Center
http://www.|sc.nasa.qov/pao/org/offices/sa.html




Caillot-Augusseau, A., Vico, L., Heer, M., Voroviev, D., Souberbielle, JC.,
Zitterman, A., Alexandre, C., and Lafage-Proust, M.H. Space flight is
associated with rapid decreases of undercarboxylated osteocalcin and
increases of markers of bone resorption without changes in their
circadian variation: observations in two cosmonauts. Clinical Chemistry
2000; 46(8 Pt 1): 1136-43.

Greenison, M., Hayes, J., Siconolfi, S., and Moore, A. Functional
Performance Evaluation. Extended Duration Orbiter Medical Project.
NASA Johnson Space Center, 1995.

Lane, H. and Schoeller, D. Nutrition in Spaceflight and Weightlessness
Models. CRC Press, 2000.

Smith S, Davis-Street JE, Rice BL, Nillen JL, Gillman PL, Block G. Nutrition
Status Assessment in Semiclosed Environments: Ground-Based and
Space Flight Studies in Humans. Journal of Nutrition 2001; 131:2053-
2061.




Smith S, Davis-Street JE, Rice BL, Nillen JL, Gillman PL, Block G. Nutrition
Status Assessment in Semiclosed Environments: Ground-Based and

Space Flight Studies in Humans. Journal of Nutrition 2001; 131:2053-
2061.

Smith, S., Wastney, M., Morukov, B., Larina, I., Nyquist, L., Abrams, S.,
Taran, E., Shih, C., Nillen, J., Davis-Street, J., Rice, B., and Lane, H.
Calcium Metabolism Before, During, and After a 3-Month Spaceflight:
Kinetic and Biochemical Changes. American Journal of Physiology

1999. 277: R1-R10.
Smith, et al., 2000. This data is a compilation of the following sources:

*Rice, B., Lane, H., Smith, S. Dietary Intake During Spaceflight. FASEB
1999. J 13: A695 (#534.5).

*Smith, S., Davis-Street, J., Rice, B., Block, G. Nutritional Status
Assessment During Spaceflight. FASEB 1999. J 13:A265 (#225.3).

*Smith, S., Lane, H.. Gravity and Spaceflight: Effects on Nutritional

Status. Current Opinion in Clinical Nutrition and Metabolic Care
1999. 2:335-338.




*Smith, S., Lane, H. Nutritional support. In: Barratt, M., Pool, S., eds.
Principles of Clinical Medicine for Spaceflight. New York, NY:
Springer-Verlag (in press).

*Smith, S., Wastney, M., Morukov, B., Larina, I., Nyquist, L., Abrams, S.,
Taran, E., Shih, C-Y, Nillen, J., Davis-Street, J., Rice, B., Lane, H.
Calcium Metabolism Before, During, and After a 3-Month

Spaceflight: Kinetic and Biochemical Changes. American Journal of
Physiology 1999. 277:R1-R10.

Stein, T., Leskiw, M., and Schluter, M. Diet and Nitrogen Metabolism During

Spaceflight on the Shuttle. Journal of Applied Physiology 1996. 81: 82-
97.

Stein, T., Leskiw, M., Schluter, M., Donaldson, M., and Larina, |. Protein
Kinetics During and After Long-Term Spaceflight on Mir. American
Journal of Physiology 1999. 81 (39): 1014-1021.

Stein, T., Schluter, M., Leskiw, M., Gretebeck, R., Lane, H., and Hoyt, R.

One-Year Report of the LMS Shuttle Mission. NASA, Washington, D.C,
1998.




