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Introduction
For many applications, most code is not devoted to implementing the desired input-
output behavior but to providing system-wide properties like reliability, availability,
responsiveness, performance, security, and manageability. We call such qualities ilities.
This paper describes a system that enables a more complete separation of ility imple-
mentations from functional components, allowing ilities to be developed, maintained,
and modified with minimal impact on functional implementations.

Ilities can seldom be entirely implemented simply as discrete services.  For exam-
ple, many replication algorithms require logging and distributed update on every object
modification. Similarly, performance, security, and manageability enhancements de-
mand systematic and widespread code changes, complicating a clean design. While ob-
ject-oriented design and programming has provided effective ways to modularize func-
tional requirements into separately maintainable components, it has been less successful
in enabling programmers to modularize code devoted to ilities.  Object orientation does
not provide programming structures that allow ilities and functionality to evolve inde-
pendently over the software life cycle.

Separating ility support from functional components becomes significantly more
important and complex in distributed applications.  Distributed applications typically
have more stringent ility requirements and need more complex ility algorithms. This
article defines an approach that supplements standard object-oriented methods with a
general mechanism for injecting ility implementations into the communications be-
tween functional components.  Algorithms that support ilities are separated from func-
tional components but may be invoked whenever functional components communicate.
This allows ilities and functionality to be modified and maintained with minimal impact
on each other.

Achieving Ilities by Controlling Communication
Our research integrates the following key ideas:

1. Intercepting communications. Our primary claim is that ilities can be achieved
by intercepting and manipulating communications among functional compo-
nents and by invoking appropriate “services” on all inter-component commu-
nications.

2. Discrete injectors. Our communication interceptors are first class objects, dis-
crete components that have (object) identity and can be sequenced, combined
and treated uniformly by utilities. We call them injectors. In a distributed sys-
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tem, an ility may require injecting behavior on both the client and the server.
For instance, security requires authenticating on the server credentials gener-
ated on the client. Figure 1 illustrates injectors on communication paths be-
tween components.

3. Injection by object/method. Each instance and each method on that object can
have a distinct sequence of injectors.

4. Dynamic injection. Dynamic configuration allows us to place debugging and
monitoring probes in running applications and to create software that detects
its own obsolescence and updates itself.  There is a tradeoff, however, since se-
curity and manageability require rigorous configuration control over injector
changes.

5. Annotations. Injectors need to communicate among themselves. For example,
the authentication injector needs to know the identity and credentials of a
service requestor. Our solution is to provide a general mechanism for annotat-
ing communications with meta-information. Injectors are capable of reading
and modifying the annotations of requests (and reading and modifying the re-
quest arguments and target function name).

6. Thread contexts. Our goal is to keep the injection mechanism invisible to the
functional components. However, sometimes clients and servers need to com-
municate with injectors. For example, a quality-of-service injector may want to
process requests in order of their priority, but the only reasonable source of re-
quest priority is the client application. While some annotations must originate
from the functional applications, separation of concerns would be destroyed if
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functional components have to be aware of all annotations.  We make annota-
tions largely transparent to functional components by providing an “alterna-
tive communication channel.” Each client and server thread has its own set of
annotations, the thread context. The system arranges to copy annotations among
the client’s thread context, the request, and the server’s thread context.

7. High-level specification compiler. There is a large conceptual distance
between abstract ilities and discrete sequences of injectors. To span this gap, we
have created Pragma, a compiler that takes a high-level specification of desired
properties and ways to achieve these properties and maps that specification to
an appropriate set of injector initializations.

Object Infrastructure Framework
We have illustrated the above ideas by defining an architecture (the Object Infra-

structure Framework or OIF), instantiating that architecture for a particular environ-
ment (CORBA®/Java™), and creating several validating applications within that
framework [2, 8].

Current technology for building distributed, component-based applications uses
sockets, messages, remote procedure calls (e.g., DCE™), or Object Request Brokers
(ORBs, including, for example, CORBA, JavaRMI™ and DCOM). Without too much loss
of generality, we focus on ORB frameworks and use CORBA as our exemplar. CORBA
implements distribution by building proxy objects on both the client (caller environ-
ment) and server (called environment) to represent a particular server object. The client-
side proxy (or stub)  is responsible for marshaling a client request into a form that can be
transmitted over the network; the server-side proxy (or skeleton) demarshals the request
into native data structures for the server to process. ORB technology provides object lo-
cation transparency and hides the details of marshaling and communication protocols.
What it doesn’t do is handle ility concerns like partial failures, security, and quality of
service. ORBs such as CORBA and Enterprise Java Beans™ provide different discrete
mechanisms for particular ility issues, but such mechanisms typically provide (1) only a
finite number of choices for the application architect, and (2) require a good under-
standing and diligent application of the mechanism by the application programmer.

Injectors
OIF’s key implementation idea is to modify ORB proxies so that: (1) each stores a map
from proxy methods to a sequence of injectors, and (2) in the proxy processing for a
given method, that sequence is invoked between the application and marshaling. The
action method of the injector gets an object representing the request. It can interrogate
and modify that object for the request’s target, method name, arguments and annota-
tions. Being code, it can perform arbitrary other operations, such as invoking methods
on other (remote) objects and changing its local static state. Figure 2 illustrates CORBA
proxies extended with injectors.

Injector processing is in “continuation style”: injectors invoke the rest of the injector
sequence between their “before” and “after” behaviors. (With the continuation pattern,
one of the parameters of a routine is a representation of “the rest of the work to be
done” after this routine has finished. In OIF, the continuation is represented as a list of
injectors, and invoking the continuation is simply calling the first injector in this list,
providing it the rest of the list as its continuation.) This has the advantages of (1) allow-
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ing the injector stack to naturally catch exceptions, and (2) permitting an injector to
forgo or transform the continuation sequence. Our authentication injector illustrates the
former. A server-side authentication injector dissatisfied with a request’s credentials
raises an exception that a client-side injector catches. The client side injector interrogates
the user and reinvokes the request with the additional annotation.

Similarly, when methods return static values and do not have side effects, an injec-
tor can cache values returned from previous calls. When a request is already in the
cache, the caching injector can omit the remote call and return the local value. This has
the effect of doing "objects by value" for selected parts of a remote object.

Annotations
Annotations provide a language for applications and injectors to communicate

about requests. That is, they are a meta-language for statements about requests and the
processing state. Annotations can express notions like “This request is to be done at
high priority,” “Here are the user’s credentials,” and “Here is the cyberwallet to pay for
this request.” Annotations can be associated with both requests (request annotations) and
processing threads (thread contexts).

OIF annotations are name-value pairs. The names are strings and values are
CORBA ANY types,  allowing object references as annotation values. This requires an-
notation readers and writers to have an implicit agreement about annotation types. Ob-
ject references in annotations are used for patterns such as continuations (“send the re-
sults of this computation to X”) and agencies (“Y can verify my identity”). (Encoding
object references as strings would burden the recipient with demarshaling.) The frame-
work defines certain common annotations, including session identification, request pri-
ority, sending and due dates, version and configuration, cyber wallet, public key, sender
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Figure 2: OIF inserts injectors between the application and the network



Inserting Ilities August 17, 1999

5

identity and conversational thread. Programs can rely on the common meanings of
these annotations. Applications and injectors can create other annotations.

Annotations can be implemented as hash tables or property lists. OIF proxies mar-
shal and demarshal request annotations like ordinary procedure arguments.

Requiring injectors to declare the annotations they read and write (and enforcing
those declarations) can improve security. We may feel safer using an injector that is re-
stricted to only read the due dates of messages rather than one that can alter user identi-
fication or method  arguments.

Thread contexts (annotations associated with processing threads) are used to allow
applications to communicate with injectors. On each call, the framework copies the cli-
ent thread’s annotations to the annotations of the nascent request. On the server side,
the framework builds the context of the service thread from the request’s annotations.
On return, the framework copies the server’s context to the annotations of the response
and then back to update the context of the original client. This scheme has the feature of
propagating context through a chain of calls: client A’s call of B at priority x becomes B’s
context’s priority of x. B’s request of C (in furtherance of A’s call) goes out with priority
x. Figure 3 illustrates this pattern.

Thread contexts have the advantage of permitting client/injector communication
without modifying the application interfaces. They have the disadvantages that (1)
newly spawned threads need to copy or share the context of their parents and (2) there
is no primitive linguistic mechanism for neatly “block structuring” a change to a
thread’s context—for example, allowing a thread to simply timeshare among tasks.

Declarations can control annotation copying. For example, the number of times the
(client) retry-on-failure injector retries is not sent downstream. Similarly, we do not
want a server to be able to update a client’s user identification. The default behavior is
to copy, enabling creating new annotations without modifying existing application
code.

Pragma
Our high-level goal is to take functional code, ility specifications and reusable ility
service implementations and weave them together into the actual system code. Ideally,
we would like to be able to press the “application: be secure,” key, and, lo and behold,
the application code is pervasively modified as necessary. That said, we have the sad
task of reminding the reader of the dearth of magic in the world. Ilities must be imple-
mented by invoking actual services. Saying you want security does not cause security to
happen. Rather, you have to define security as  (1) Encrypting all communications using
{ 64 | 128 | 7 } bit { DES | RSA | ROT-13 }, (2) Checking the user’s { password | finger-
prints | DNA } for { every | occasional } access to { all | sensitive } methods, (3) Recog-
nizing intrusions { from strange sites | trying a series of passwords | asking too many
questions }, (4) Keeping track of privileges by { proximity | job function | dynamic
agreements }, and so forth. We need the ility architect both to have implementations of
the appropriate algorithms (injectors that actually do that work) and to specify where
each set of injectors is to be applied.

Pragma posits a two-level structure to achieve these goals. The architect defines: (1)
A number of ilities (symbolic names like “reliability.”) (2) For each ility, some actions:
ways of achieving that ility. For example, the ility “security” might have an action “high
security” that does authentication through fingerprints and includes extensive moni-
toring and intrusion detection, while the action “low security” might require only
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authentication through passwords and limited monitoring. (3) A map from the actions
to locations in the program. A location can be (a) on a particular method in the imple-
mentations of a particular interface, (b) on all the methods of a particular interface,
(c) on all the methods of a given name, or (d) everywhere. These definitions can also in-
clude assertions about injector ordering.

Pragma also includes constructs for declaring annotations (including their type, de-
fault values and copying context) and for constraining the use of injectors. We support
the latter in two ways: an assertion mechanism allows an injector to preclude or demand
another, and a cascade mechanism allows the successive refinement of policies within
an organization. More specifically, a policy (collection of Pragma statements) may im-
port other policies. A policy may also specify a set of alternatives for an ility. Policies
that import such restrictions can choose among (or further restrict) this set, but may not
offer new choices. Thus, an enterprise architect may define three acceptable security al-
ternatives, an application suite architect may restrict these to two, and the ility architect
for a particular program may choose to use only one.

The Pragma compiler takes as input both a policy and the application IDL™, and
generates injector initializations and annotation declarations. Pragma, for each method,
interface, and ility, finds the “most specific” way of doing that ility on that method of
that interface. (Subinterfaces are more specific than superinterfaces; method-mentions
more specific than not, and, arbitrarily, method-mentions more specific than interfaces.)
It then orders the actions on that 〈interface, method〉 and outputs the results as data to
the initialization mechanism. Pragma flags as errors combinations that violate con-
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straints. Figure 4 shows the Pragma for Vendoom [8], a demonstration system devel-
oped using OIF .

Applied ilities
Our work has been driven by demonstrating these ideas in a pair of prototypical appli-
cations. DisDev [2] implements a distributed repository and illustrates the use of injec-
tors to achieve reliability through replication. Vendoom implements a simulation of a
distributed, competitive network management application. It uses injectors to achieve
quality of service (i.e., real-time performance), manageability and security [8]. For each
of these ilities, we review the lessons learned in pursuing  these ilities in our framework.

Reliability
Our primary experiments in supporting reliability have centered on injecting replication
algorithms into DisDev, a document management application. Replication algorithms
typically send copies of messages to replicants. That is, if operation f is invoked on x
and y, (and f mutates the application state), all replicants need to be aware of this action.
Our work suggests that this is more easily supported if x and y are symbolic, rather than
pointers into a replicant’s memory space.

 Other reliability injectors we have demonstrated include the retry injector that re-
peats attempts that time out or otherwise fail, and the rebind injector that seeks alterna-
tive servers under the recognized failure of one.

policy vendoom is
import vendoom;
import injectors;
ility   Context,  Security,  QualityOfService,

        Reliability,  Efficiency;
var priority : int = {1};
var retries  : int = {5} only from client;

for Context do copyContext;
for Security on request in Controller do iButton;
for QualityOfService on call in ByPriorityControllerdo queueing;
group cachedStuff on identifier, on description, on valueTo;
for Efficiency within cachedStuff do caching;
for Reliability do retry ;
define copyContext for Context as

client ContextInjectorFactory do first,
server ContextInjectorFactorydo last;

define iButton for Security do last as
client server injectors. AccessControlPkg.AccessControlInjectorFactory,
client server injectors. IdentificationPkg.IButtonIdentificationInjectorFactory

define queueing for QualityOfService as
server injectors. QManager.QueueManagerInjectorFactory;

define caching for Efficiency as
client CacheInjectorFactory do after copyContext;

define retry for Reliability as
client ErrorRetryInjectorFactory ( retries = {"5"} )do last;

end;

This is policy vendoom.

These are namespace imports.

Vendoom uses five ilities. For
each ility, class and method,
there (may) be more than one
way to achieve that ility.

Var declares annotations, their
types, default values and when
they’re copied to thread
contexts.

For each ility, we can declare a
mapping from a location (on
method in class) to how that ility
is to be achieved.

Here we define the mapping
from the achieve names to
injector factories. The “do”
clauses specify a partial
ordering on the injectors.

Figure 4: Pragma for Vendoom
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Transactions are a reliability mechanism that illustrates the limits of this approach.
Transactions require application objects that can start and end transactions and rollback
on failure. If the application objects have these interfaces, injectors can be used to coor-
dinate their invocation. For example, transaction identity is a straightforward applica-
tion of request annotations. Sadly, however, transactions cannot be transparently
achieved by injection to objects that lack them.

Quality of service
By quality of service we mean to encompass a variety of requirements for getting things
done within time constraints. The real-time community recognizes two varieties of real-
time systems, hard real-time and soft real-time. A correct hard real-time system must
complete all tasks by their deadlines. Soft real-time systems seek to allocate resources to
more important tasks. Hard real-time requires cooperation throughout the processing
chain (for example, in the underlying network), for the promise of particular service can
be abrogated in too many places. (Doug Schmidt’s work on real-time CORBA ORBs [11]
illustrates this point: commercial CORBA ORBs, built without constant real-time mind-
fulness, conceal FIFO queues and exhibit anti–real-time behavior.)

Soft real-time is amenable to several communication control tactics. These include
using queue control to identify the most worthwhile thing to do next [8], calling the un-
derlying system’s quality of service primitives, using side-door mechanisms to effi-
ciently transport large quantities of data, and choosing among multiple ways of prob-
lem solving. We have demonstrated the first of these in Vendoom. All except the last are
easily done with injectors. If the application supplies the alternative problem solving
methods (either by replicating the problem solving sites, allowing load balancing or
providing genuinely different algorithms) the communication control mechanism can
apply the most effective problem solvers. Injectors, as stateful objects, can determine the
best message target using tactics such as learning from historical experience and con-
sulting traffic-reporting agencies.

Manageability
We take a network control perspective on manageability, dividing manageability into
five elements: performance measurement, accounting, failure analysis, intrusion detec-
tion, and configuration management. The first four of these are amenable to generating
events in relevant circumstances and directing those events to the appropriate recipi-
ents. For example, in Vendoom we have used injectors to publish events to update
graphic displays, report payment data and debug the application. In general, to the ex-
tent that the semantics of interesting events is tied to communication acts (e.g., each
time a service is called, a micro-payment for that service is processed, or the trace of in-
ter-component messages is sent to a system’s debugger) then they can be realized
through external communication controls. To the extent that the interesting actions
happen completely within the application components (e.g., payment is due propor-
tional to the number of records accessed by a database service or debugging wholly
within a component) then this technique is inadequate.

We have also designed a configuration management injector that dynamically tests
for incompatible versions and automatically updates stale configurations to the current
version. Such management can be done only for clients and servers that provide the ap-
propriate interfaces.



Inserting Ilities August 17, 1999

9

Security
Security (at least in a software sense) is primarily a combination of access control, intru-
sion detection, authentication, and encryption. Controlling the communication process
allows us to encrypt communications, reliably send user authentication from client to
server (and pass it along to dependent requests) and check the access rights of requests.
All this is independent of the actual application code.1 Watching communications pro-
vides a locus for detecting intrusion events [5] (though not, of course, specifying the
actual algorithms for recognizing an intrusion). We have illustrated security in Ven-
doom with injectors that perform authentication (checking the user’s Java ring) and ac-
cess control.

Can such mechanisms yield security? Somewhat. Such mechanisms reflect common
notions of security, but cannot prevent hazards such as subverting a system’s personnel,
tapping communication lines, brute-force cracking of encryption codes, or components
that cheat. Magic has its limits.

Related work
We have described a mechanism for separately specifying system-wide concerns in a
component-based programming system and then weaving the code handling those con-
cerns into a working application. This is the theme of Aspect-Oriented Programming
(AOP). OIF is an instance of AOP, and brings to AOP a particularly elegant division of
responsibilities. Key work on AOP includes Harrison and Ossher’s Subject-Oriented
Programming [6] which extends OOP to handle different subjective perspectives; Aksit
and Tekinerdogan’s message filters [1], which, like OIF, reify communication intercep-
tors; Lieberherr’s Adaptive programming [9] which proposed writing traversal strate-
gies against partial specifications; and Kiczales and Lopes [7] language for separate
specifications of aspects, which effectively performs mixins at the source-code language
level. Czarnecki and Eisenecker’s book [3] includes a good survey of AOP technology.

The idea of intercepting communications has occurred several times in the history
of computer science. Perhaps the earliest examples were in Lisp: the Interlisp advice
mechanism and mix-ins of MacLisp.

It is common to tackle ility concerns by providing a framework with specific choices
about those concerns. Examples of such include transaction monitors (e.g., Encina™,
Tuxedo®) and distributed frameworks like Enterprise Java Beans and CORBA. It is
worth noting that the CORBA security specification and many commercial CORBA im-
plementations are emerging with some form of user-defined filter mechanism on com-
munications. While these mechanisms are not as general as OIF, our work can be under-
stood to be a methodology for using CORBA filters.

The use of a separate specification language for creating filters parallels the work at
BBN on quality of service [10], where an IDL-like Quality Description Language is
woven with IDL to affect system performance.

Concluding remarks
Elsewhere [4], we argued that requirements come in four varieties: functional require-
ments that exhibit the primary semantic behavior of a system and are typically locally
                                                          
1 However, we may only be able to encrypt the message data, not its headers, and, less we confuse the mar-
shaling code, would do poorly at encrypting references. In general, encryption is better done after marshal-
ing.
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realized, systematic requirements that can be achieved by "doing the right thing" consis-
tently throughout the program, combinatoric requirements that are computationally in-
tractable expressions of overall system behavior and aesthetic requirements that express
non-computable qualities of the system. Conventional development does a good job of
supporting the first of these and the last two are difficult to automate in any case.

We believe that the mechanisms described in this paper (injectors on communica-
tion, annotations, and high-level specification languages) are a comprehensive approach
to satisfying systematic requirements. While not all systematic algorithms can be im-
plemented without application cooperation, we have demonstrated a technology for
taking a high-level expression of desired systematic requirements and automatically
propagating this behavior to the components of a distributed system. We believe our
results generalize to other contexts.
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