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Abstract 

This paper describes an implemented software prototype for the 
Distributed Collaboration and Interaction (DCI) system, which 
addresses the challenges of helping humans to act as an 
integrated part of a multi-agent system.  Human interaction with 
agents who act autonomously most of the time, such as a process 
control agent in a power plant, has received little attention 
compared to human interaction with agents who provide a direct 
service to humans, such as information retrieval.  This paper 
describes how liaison agents within the DCI system can support 
human interaction with agents that are not human-centric by 
design but must be supervised by or coordinated with humans.  
Further, the DCI prototype supports notification and planning for 
humans from the perspective of an organization.  It treats 
humans in this organization as if they were agents with explicitly 
modeled roles and activities related to software agents in the 
same system.  Planning for humans presents unique challenges 
because the models represented in traditional planners do not 
match well with human mental models.  The DCI prototype is 
applied in the domain of NASA advanced life support systems, 
which are controlled by software agents in an autonomous 
fashion with occasional human intervention.   

Introduction  

As software agents become more capable and more 
prevalent, humans must be able to interact with a 
heterogeneous collection of humans and software agents.  
Both humans and software agents can play diverse roles in 
a system, with varying degrees of autonomy, initiative, 
and authority across different tasks.  Although many of 
today's software agents commonly interact with humans, 
these interactions are often in direct service to the human 
in a one-on-one manner, much like a human's interaction 
with a travel agent, for example.  However, software 
agents can also undertake long-term, autonomous 
operations that serve human purposes as well, though not 
through direct interaction with a human.   

Humans need to interact with autonomous agents over 
long-term operation for a variety of reasons including 
monitoring, modifying goals, maintaining or repairing 
underlying hardware or software, responding to 
anomalies, and taking advantage of opportunities.  
Research supporting human interaction with these types of 
agents has received relatively little attention, however.  As 

more software agents are deployed for long-term 
autonomous operation, the research challenge of enabling 
agents and humans to work together as a complete system 
becomes more important.  To meet this challenge, 
research must overcome issues such as limited visibility 
into the agent's processing, mismatches between a 
human's mental models and the agent's implementation 
models, inadequate adjustability of the agent's autonomy, 
lack of notification to the human about important events at 
appropriate levels of abstraction, and a basic lack of 
compatibility between a human's interface capabilities and 
the interfaces provided by a software agent.   

We have developed the Distributed Collaboration and 
Interaction (DCI) system to address these difficulties in 
human-agent interaction and to create an environment in 
which humans and software agents together can form an 
integrated multi-agent system.  The initial motivation for 
the DCI system arose from our experiences with deployed 
intelligent control agents for NASA advanced life support 
systems (Bonasso et al., 2002; Schreckenghost et al., 
1998).  These intelligent control agents, developed using 
an architecture known as 3T (Bonasso et al., 1997), 
monitor and perform process control for regenerative life 
support systems, which recover usable water or air, for 
example, from the waste products created by biological 
systems over time.  Over months to years of continuous 
operation of these agents, we discovered many 
unaddressed needs for human interaction.  These lessons 
learned are detailed in (Schreckenghost et al., 2002b).  
Through the DCI prototype described in this paper, we 
have addressed and enhanced our understanding of these 
interaction needs and begun to formulate solutions. 

Further, we have recognized the need for and 
provided support for interactions of groups of humans and 
software agents that are coordinated at the level of the 
organization they support.  Based on our own experiences, 
the NASA organization (considering mission objectives 
and constraints) defines policies and protocols for 
fulfilling human roles within the organization as well as 
for the operation of software agents during the missions.  
A similar requirement to support organizational needs 
could be seen in the management of power plant 



operations, for example, if automated control agents were 
deployed for process control with possible monitoring and 
intervention by human supervisors.  These types of 
organizations can be realized as heterogeneous human-
agent multi-agent systems.  In these systems, 
organizational policies and objectives require humans to 
perform in various roles and to maintain a specified level 
of situation awareness with respect to the automated 
control agents and the underlying hardware they control.  
In the course of their duties, humans must be able to 
interact with and influence the software control agents.  
The DCI system supports these organizational 
requirements by providing an environment through which 
humans can act as system agents with roles and tasks 
managed by the organization along with software agents 
who perform other operations in the organization.  This 
paper describes how the development of the DCI prototype 
addressed unique challenges to apply automated planning 
for organizational goals to human agents. 

The DCI approach uses intermediate liaison agents 
associated with each human to provide an interfacing 
layer between the human and the rest of a multi-agent 
system.  These liaison agents have the purpose of 
representing an individual human to the rest of the 
software in the system while supporting a human-centric 
and user-friendly interface for that human into the system.  
We also use augmenting software associated with other 
existing software in the multi-agent system (for example, 
a centralized planner or a particular software agent or 
group of these agents) to handle the human-interfacing 
requirements related to that domain-centric software.  
Although the domain-centric software must internalize 
some basic human-interaction functionality such as 
adjustable autonomy (Dorais et al., 1998), our approach 
avoids overburdening resource-limited software agents, 
whose processing may include time-critical tasks, with 
tasks that are not directly related to their primary 
organizational objectives.  The augmenting software is 
designed to integrate closely with the domain-specific 
software and thus off-load much of the human-centric 
processing.   

This paper provides an overview of the DCI system 
and a description of a software prototype that implements 
many of the desired behaviors of the DCI environment.  
This prototype is applied to support NASA engineers 
working with intelligent control agents for advanced life 
support systems.  We provide an overview of this 
application and a description of how the DCI prototype 
supports human interaction with an intelligent control 
agent within the context of organizationally defined roles 
and interaction policies.  We next describe the 
implementation that manages the humans' roles and 
activities.  We then discuss some of the related research 

that supports this work, and we conclude with a summary 
and a discussion of research issues. 

DCI Overview and Prototype  

Our DCI prototype supports a number of human agents, 
each with a set of daily activities to perform as mandated 
by the organization, much as NASA mission tasks would 
be mandated for crew members.  Additionally, three of the 
humans are responsible for handling anomalies that occur 
in the Water Recovery System (WRS), a crew life support 
system developed and tested at the Johnson Space Center 
(JSC) that removes the organic and inorganic materials 
from waste water to produce potable water.  To handle 
WRS anomalies, human agents must interact with the 
WRS control agent.  One human agent, the Prime, has 
first responsibility for responding to problems in the WRS; 
a second human agent, the Backup, has the job of taking 
over if the Prime is unable to respond to the problem.  The 
Coordinator oversees the work of the other two human 
agents and also serves as the secondary Backup.  This 
section provides an overview of the DCI system and 
describes how the current DCI prototype supports these 
human agents in interacting with the WRS control agent. 

The philosophy behind the DCI system involves 
creating an environment that supports human 
collaboration and interaction with software agents and 
also giving humans appropriate tools and interfaces to 
participate effectively in these interactions.  In short, we 
are striving to provide a virtual environment in which the 
human can interact naturally with software agents.  The 
DCI system is made up of three types of software (1) 
augmenting software that integrates with domain-centric 
software or software agents to provide a human-oriented 
virtual multi-agent environment, (2) liaison agents that 
manifest each human into this virtual environment, and 
(3) user-interface software that is managed by the liaison 
agents to provide a comfortable and effective interface for 
the human to the multi-agent system. 

Figure 1 depicts representative elements of a DCI 
system   The entities with black backgrounds (the human, 
the WRS system and its control agent, and the multi-agent 
planner) participate in, but are not part of, the DCI 
environment.  The following paragraphs describe the 
function of each DCI entity in Figure 1 as well as how the 
entity is instantiated and used in the DCI prototype.  

The Conversion Assistant for Planning (CAP) and the 
Event Detection Assistant (EDA) are representative pieces 
of augmenting software in the DCI system.  The CAP is 
software that is tightly coupled and shares models with the 
automated planner, thereby augmenting the planner’s 
ability to interface with human agents. Our planner is a 
hierarchical task net (HTN) planner known as AP that is  



capable of automatically monitoring and updating its 
plans (Elsaesser and Sanborn, 1990). AP evenly 
distributes the workload among agents based on their 
capabilities and reasons about metric time for scheduling. 
The CAP’s functionality is discussed in detail in the 
section on Planning for Human Agents.  The EDA 
monitors data produced by the WRS control system and 
searches for patterns in this data that are of interest to the 
humans for such activities as anomaly analysis and 
performance assessment. The EDA is implemented using 
the Complex Event Recognition Architecture (CERA), an 
event detection system developed by I/Net.  As specified 
patterns are detected in the control data, the EDA 
generates and broadcasts its own events about these data 
patterns, which are represented at levels of abstraction 
suited to human understanding.   

Liaison agents are central to the DCI system because 
they represent the human to other software agents and vice 
versa.  The liaison agents in DCI are called Attentive 
Remote Interaction and Execution Liaison (ARIEL) 
agents, in deference to Shakespeare’s Tempest character.  
Although the ARIEL agents in the current DCI prototype 
do not yet have explicit goals and desires, they do hold 
explicit beliefs about the state of their human user, and 
they exhibit many of the basic processing behaviors 
desired for a complete ARIEL agent implementation in 
the future.  The beliefs held by an ARIEL agent are 
managed by its State Management Service (SMS), which 
takes input from many of ARIEL’s other services and 
creates a coherent state model of the user, including 
current activity, location, role, schedule, and health.  The 
SMS also interacts with its user by querying for state input 
(such as schedule acknowledgements), when appropriate.  
Other services represented in ARIEL’s design include: 

• Notification Service (NS): The NS combines 
information about the user’s current state and roles, the 
organizational policies about information distribution 
and situation-awareness requirements, and the user’s 
own information preferences to determine if an 
incoming notice or event is of interest and, if so, how to 
inform the user.  How to inform the user of a notice is 
expressed as an assessment of the latency and focus of 
attention (i.e., saliency) to be used when presenting the 
information, and a selection of interface modalities 
(e.g., computer display, pager, email) to use for this 
presentation.  The NS implementation and the 
representation of specifications an organization or 
individual may use to filter or present notices are 
described in detail in (Schreckenghost et al., 2002a).  In 
the DCI prototype, the NS that is associated with the 
human who has the Prime role ensures that he is 
notified of important WRS anomaly events with high 
saliency.  However the Backup is allowed to continue 
her current task without distraction because her NS 
simply logs anomaly notices.  Notices processed by the 
DCI prototype include (1) events generated by the Event 
Detection Assistant about the WRS control system, (2) 
notices from the ARIEL agent to its user about ARIEL 
requests such as the need for schedule 
acknowledgement, and (3) events generated by the 
ARIEL agents of other humans in the user’s group 
about various human state changes, such as a location 
change.   

• Task Status Service (TSS): The TSS provides activity 
tracking and plan management capabilities.  In the DCI 
prototype, the TSS (1) monitors the user for 
acknowledgement of time-critical assigned activities 
such as WRS repair tasks, (2) uses information 
generated by the augmented planner to inform its user 
when a planned task becomes ready to execute, (3) 
monitors its user for evidence that critical tasks have 
been initiated using location information or direct user 
queries, and (4) provides a source of feedback to the 
augmented planner about human progress or lack of 
progress toward achieving a plan.  The TSS helps the 
ARIEL agent close the loop between the planner and a 
human, which is especially important for time-critical 
repair tasks in the DCI prototype application. The TSS 
implementation is discussed further in the section on 
Planning for Human Agents.  

• Location Service (LS): The LS tracks human location 
information including physical location and cyber 
location, i.e., whether or not the user is online and 
which display platforms she is currently using.  In 
addition, the location service uses the combination of 
physical and cyber location information to infer an 
overall assessment of the user’s presence, for example, 
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Figure 1. Representative elements of DCI architecture. 



“Available-Remote-Online.”  This location information 
is provided through the State Management Service to 
the other services and is used (1) by the Task Status 
Service in tracking the initiation or completion status of 
activities, (2) by the Notification Service in determining 
which notification modality is currently most 
appropriate, and (3) by the User Interface Service in 
customizing the presentation of information.  In the 
DCI prototype, a user’s physical location is tracked 
through log-in and log-out events within the DCI 
environment (via static IP mapping).  We are also in the 
process of incorporating the use of GPS devices to track 
physical location.  Similar versions of location tracking 
have been used successfully by other systems 
(Chalupsky et al., 2001; Schmandt et al., 2000).   

• User Interface Service (UIS): The UIS manages all 
direct interaction with the user.  It invokes different 
modalities, such as display, pager, or email, to present 
information in the manner most appropriate to the 
user’s current state and task.  It also manages the 
overall state of information presented by any persistent 
user interface (e.g., a graphical user interface, GUI, 
versus a transient pager message) such that multiple 
locally-managed views of this information will remain 
consistent (e.g., multiple GUIs open on different display 
platforms).  In the DCI prototype, the UIS is capable of 
sending emails, posting to and accepting information 
from the DCI user interface GUIs discussed later in this 
section, and accessing a simulated pager server.  
Multiple interface modalities for posting information to 
humans have been managed successfully in related 
research projects such as (Schmandt et al., 2000).  In 
the future, we hope to incorporate increasingly natural 
and more sophisticated human-agent interaction 
mechanisms into this service.   

The remaining ARIEL services are not yet implemented in 
the DCI prototype: 

• Command and Authorization Service (CAS): The CAS 
supports the user in remotely interacting with mostly 
autonomous agents who are tied to physical systems that 
the user also influences, such as the underlying WRS 
life support system hardware.  “Commanding” refers to 
a user’s action of issuing directives to the underlying 
physical system (e.g., turning on a pump).  Using DCI, 
this commanding should be mediated through the 
autonomous agent controlling the system, when 
possible.  The CAS (1) determines if the user is 
authorized to command (i.e., access control), (2) 
ensures command lock-outs or resolves command 
conflicts when more than one user is interacting with 
the system or the control agent (e.g., the WRS control 
agent), and (3) reconfigures both the automation and 

user interface in preparation for commanding (i.e., 
adjusting the autonomy of the WRS control agent).   

• Interruption Handling Service (IHS): The IHS will 
coordinate the actions of other services to minimize the 
impact of interruptions on the user’s primary tasks (e.g., 
consider intrusiveness in the NS).  Support for 
interruption handling includes (1) determining when 
the user should be interrupted and how intrusive the 
interruption should be, (2) mapping the human concepts 
of task status at interruption (delayed, deferred, 
suspended) to the changes needed to update the plan by 
an automated planner (e.g., goal changes, task 
completion status changes), and (3) assisting the user in 
managing multiple, concurrent threads of activity. 

• Interactive Procedure Service (IPS): The IPS will assist 
the user in temporarily modifying standard operating 
procedures executed by the automated control software. 

• Interactive Event Service (IES): The IES will assist the 
user in interactively defining temporary, new 
operational events and controlling automated 
monitoring for these events. 

The user interface software in the DCI system is critical 
for providing humans with effective tools to participate in 
the overall multi-agent system.  The prototype’s user 
interface software currently consists of GUIs that give a 
user access to (1) her ARIEL agent’s current model of her 
user state, (2) her schedule as planned and updated by the 
augmented planner and as annotated with status 
information by the Task Status Service, (3) the archive of 
notices that her Notification Service has determined are 
relevant, and (4) a high-level overview toolbar as shown 
in Figure 2.   Additional GUIs that are in the design stages 
for the DCI prototype include (1) a view of the state of the 
user’s group, and (2) a dialogue interface that allows the 
user to interact conversationally with other human and 
software agents, including the ARIEL agents of other 
group members.   

 Figure 2 shows the primary DCI user interface toolbar. 
This toolbar is designed to be always visible on a small 
section of the user’s display and is used for multiple 
purposes.  First, it provides buttons that allow a user to 

 
Figure 2.  DCI toolbar.  Icons access additional GUIs 

(user state, schedule, notices, group, conversation, and 
logout). 



access other DCI GUIs.  Second, it provides the user with 
“at a glance” information about important changes that 
have recently occurred, to which the ARIEL agent is 
drawing the user’s attention. In Figure 2, the schedule 
icon has been highlighted with a red exclamation point 
indicating a very important scheduling event, in this case 
the insertion of a time-critical repair task to the user’s 
schedule as the next task the user needs to perform.  (This 
icon actually flashes on and off and makes a sound in the 
prototype to better draw the user’s attention.)  The notice 
icon in Figure 2 also draws the user’s attention to a lesser 
extent by indicating that two highly important or urgent 
notices are available.  The toolbar shown in Figure 2 can 
be used to quickly orient the user to the current 
operational situation when she logs in to the DCI system 
and to alert her to what has transpired while she was 
offline.  It also provides situation awareness as she works 
at other tasks while logged in to the system.  The toolbar 
implementation uses saliency annotations from the 
Notification Service and the Task Status Service to 
determine whether to concentrate the user’s focus of 
attention (with flashing icons and sounds) or to rely on the 
user’s peripheral awareness to detect changes (with simple 
icon changes as in (Cadiz et al., 2001)). 

The Situation Viewer provides one further element 
needed in an effective user interface for humans 
interacting with intelligent control agents.  In the DCI 
prototype, the Situation Viewer summarizes complex 
situations recognized by the Event Detection Assistant and 
provides needed visibility into the operation of the WRS 
control system.  Previous work in viewing situations 
focused on providing organized logs (Thronesbery et al., 
1999).  This work integrates discrete and analog events at 
multiple levels of abstraction provided as part of the 
situation data structure. 

The DCI prototype is implemented as a distributed 
system of approximately 30 processes using both CORBA 
and IPC (Simmons and Dale, 1997) for distributed 
communications.  The user interface software and most of 
the ARIEL services are implemented in Java and have 
been executed at various times on Linux, Windows, and 
Macintosh systems.  The CAP augmentation for the 
planner, each Task Status Service, and the Event 
Detection Assistant using CERA are implemented in Lisp 
and execute on Linux systems.   

This overview of the DCI prototype shows how the 
DCI system supports human interaction with the WRS 
intelligent control system.  Although we limit our in-depth 
discussion in the following section to applying automated 

planning for humans, similar design and implementation 
challenges arose for each piece of the prototype. 

Planning for Human Agents  

The DCI prototype explores the use of an automated 
planner to manage human tasks from the perspective of 
the NASA organization, for both daily tasks as well as for 
unexpected tasks due to anomalies that arise from the 
WRS operations.  This section describes the overall 
challenges we have observed for applying automated 
planning to human agents and the approach taken in the 
DCI prototype to explore possible solutions to these 
challenges.  Our initial exploration of these challenges in 
the DCI prototype provides a step toward future, more 
general solutions across application domains. 

Applying an automated planner to human agents 
poses interesting research issues because autonomous 
planners do not integrate with humans in the same 
manner as they do with other software agents, such as 
layered control architectures like 3T (Bonasso et al., 
1997).  These issues arise from the different ways in 
which automated agents and humans treat the plan.  
Acceptance of a plan by a software agent like 3T usually 
implies commitment to perform all tasks in the plan in a 
pre-specified manner.  On the other-hand, acceptance of a 
plan by a human agent occurs at a higher level of 
abstraction and implies intent to complete the plan but 
makes less commitment on how and when the tasks will 
be accomplished.  In addition, humans and software 
agents interact with planners differently.  Software agents 
can be very responsive, even for low-level operations.  For 
example, the WRS control agent will acknowledge every 
directive and execute plan steps as soon as possible.  In 
contrast, humans are less responsive and would find 
frequent interaction with the planner burdensome.  For 
example, humans may fail to acknowledge tasks before 
starting to execute them or fail to provide evidence that 
tasks have been completed.  Further, software agents can 
easily understand a planner’s representation of a plan 
through common semantics and data structures.  However, 
a human, concerned primarily with what she must do and 
when, needs a different representation of the generated 
plan.  For example, compare the view of a plan generated 
by AP in Figure 3, to the personalized daily schedule view 
of a similar plan provided through the DCI prototype for a 
given user in Figure 4. 

 

 



The DCI system accommodates the differences 
between planning for software agents and planning for 
human agents by adding software to mediate between the 
human and the automated planner perspectives.  By 
encapsulating the capabilities supporting each perspective 
in its own process, we handle separately (1) integration 
with the planner perspective and (2) integration with the 
human perspective.  The interaction among DCI 
components providing this mediation for planning is 
shown in Figure 5.  Note that multiple humans would 
correspond to multiple ARIEL agents in this figure, all of 
whom interact with a single planner and its associated 
augmentation software.   

DCI handles integration with the planner perspective 
through the Conversion Assistant for Planning (CAP).  
The CAP conditions plans generated by the planner for 
use by humans and their ARIEL agents, and it converts 
information coming from humans and their ARIEL agents 
to the planner’s perspective.  Beyond these interpretation 
duties, the CAP is responsible to monitor the execution of 
the group plan and to initiate updating the plan (e.g., 
prompting the planner to replan) when the domain 
situation changes or when agents become unavailable.   

DCI handles integration with the human perspective 
through the ARIEL agent and corresponding user 
interfaces.  ARIEL’s Task Status Service (TSS) is 
responsible to track human activities and to model when 
new activities are ready to execute and when ongoing 
activities are completed or overcome by events.  The State 
Management Service (SMS) creates a user-centric model 
of the plan provided by CAP and annotates this model 
with status information from TSS.  The User Interface 
Service (UIS) uses the SMS model of the plan to generate 
a schedule model that is the basis for the schedule view 
seen by the user.  The ARIEL agent serves both the 
human, by providing a useable schedule interface (as in 
Figure 4), and the planner, by providing feedback about 
task completion and acknowledgment, which humans do 
not typically provide in a manner that is easily used for 
computation. 

Related Work  

To integrate humans into a multi-agent system alongside 
software agents, we have leveraged existing research 
across a wide range of areas including teaming and 
human-agent teams (Chalupsky et al., 2001; Payne et al., 
2000), user interfaces and underlying applications (Cadiz 
et al., 2001; Schmandt et al., 2000), characteristics of 
autonomous agents including adjustable autonomy (Dorais 
et al., 1998; Scerri et al., 2001), and planning tools and 
mixed-initiative planning (Ferguson and Allen, 1998; 
Knoblock et al., 2001; Myers et al., 2002).  In particular, 

 
Figure 3. A typical group plan generated for four agents by the automated planner AP (Elsaesser and Sanborn, 
1990).  The hierarchy is read from left (most abstract) to right (plan leaves).  Highlighted tasks are ready to be 

executed. 

 

Figure 4.  DCI personalized schedule view.  Plans from 
the automated planner appear to the user in a natural 
form.  Tool tips over the activity names show the status 
of an activity currently modeled by the ARIEL agent. 
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Figure 5. Information flow among DCI components 
mediating between a human and an automated planner 



we have examined successful implementations of 
interaction between humans and software agents as 
demonstrated in the Electric Elves (Chalupsky et al., 
2001) and MokSAF (Payne et al., 2000) projects. 

Few research efforts in AI planning are focused on 
interpreting the output of an automated planner for a 
human agent to whom the plan applies.  There have been 
many efforts to make it easier for a human planner to use 
automated planning tools (Knoblock et al., 2001; Myers et 
al., 2002) and mixed-initiative planning (Ferguson and 
Allen, 1998).  Also, several planners, like AP (Elsaesser 
and Sanborn, 1990), have been designed to manage the 
activities of large groups of humans such as military units, 
but not individuals (Tate et al., 2000; Wilkins and Myers, 
1998).  The output of NASA's automated aids for planning 
the daily activities of shuttle and station crew is either 
interpreted by another human (e.g., the CapCom) or 
transformed into paper schedules managed by humans 
(JSC, 1999).  In contrast, the DCI system needs a planner 
that not only generates and updates plans for individual 
humans, but also interprets the plans so that the humans 
have a ready understanding of their current and future 
tasks (Schreckenghost and Hudson, 2001). 

Conclusions  

This paper describes the Distributed Collaboration and 
Interaction (DCI) system design and an implemented 
prototype of that design.   DCI aids human interaction 
with complex, mostly autonomous, domain-centric 
software agents in the context of an integrated multi-agent 
system supporting organizational goals and policies.  In 
addition to an overview of DCI, we provide a detailed 
description of the challenges we faced to apply multi-
agent planning to human agents.  Through the DCI 
environment, humans can become part of the multi-agent 
world and act naturally within it.  As autonomous 
software agents become more common, both in 
environments that highly regiment the activity of human 
agents such as NASA mission support and in every-day 
environments such as smart houses, supporting a human’s 
ability to interact with these software agents becomes 
increasingly important.   

In the development of the DCI prototype, we have 
addressed many interaction challenges including (1) 
mapping models and data designed for use by software 
(and thus containing artifacts of implementation choices) 
to human-usable information, (2) balancing an 
organization’s need for human awareness of software 
agent activities with the need to avoid both information 
and cognitive overload, and (3) providing necessary 
feedback about human state to automated software that is 
difficult or annoying for humans to provide manually.   

These interactions are directed both toward the 
human and toward other software agents.  Our next step is 
to provide fully interactive multi-step interactions between 
humans and autonomous control agents.   

We have seen the need for integration of humans with 
mostly autonomous software agents through our 
experiences with autonomous control agents for NASA 
life support systems.  Supporting this type of multi-agent 
system, including planning for humans as agents, is a 
relatively novel endeavor.  Through our work to prototype 
the DCI system, we hope to discover a set of design 
principles for building systems like this in the future.  
Thus far, we have seen that: 

• Neither thin “wrappers” around software agents nor 
sophisticated user interfaces are enough to support 
human interaction with complex software agents.  Our 
experience indicates that active and vigilant processing, 
based on knowledge of the complexity of the software 
agents as well as knowledge of the needs of the human, 
is required to allow the human to manifest herself 
effectively into a multi-agent world.  The concept of a 
liaison agent fits this role well. 

• For effective interaction, complex software agents must 
implement some human-centric functionality such as 
the capability for adjustable autonomy allowing humans 
to supervise and adjust the agents’ behavior if 
necessary.  However, much of the human-centric 
processing can be handled by tightly coupled external 
software to avoid overloading the software agents and 
degrading their performance on their primary task. 

Based on our experiences, human interaction with 
complex software agents (who themselves interact with 
one another and who have their own, independent goals) 
has previously been ad hoc and uncoordinated, and it has 
exhibited impoverished communication.  We have 
designed the DCI system to address these issues and 
applied a DCI prototype in a NASA-oriented domain.  
This DCI prototype represents an important step toward 
integrating humans with multi-agent systems in the 
future. 
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