
Aiding Collaboration Among Humans and Complex Software Agents

C. Martin, D. Schreckenghost, P. Bonasso, D. Kortenkamp, T. Milam, and C. Thronesbery
NASA Johnson Space Center

TRACLabs
1012 Hercules, Houston, TX, 77058 USA

 (281) 461-9525

cmartin@traclabs.com, ghost@ieee.org

Abstract

This paper describes an implemented software prototype for the
Distributed Collaboration and Interaction (DCI) system, which
addresses the challenges of helping humans to act as an
integrated part of a multi-agent system. Human interaction with
agents who act autonomously most of the time, such as a process
control agent in a power plant, has received little attention
compared to human interaction with agents who provide a direct
service to humans, such as information retrieval. This paper
describes how liaison agents within the DCI system can support
human interaction with agents that are not human-centric by
design but must be supervised by or coordinated with humans.
Further, the DCI prototype supports notification and planning for
humans from the perspective of an organization. It treats
humans in this organization as if they were agents with explicitly
modeled roles and activities related to software agents in the
same system. Planning for humans presents unique challenges
because the models represented in traditional planners do not
match well with human mental models. The DCI prototype is
applied in the domain of NASA advanced life support systems,
which are controlled by software agents in an autonomous
fashion with occasional human intervention.

Introduction

As software agents become more capable and more
prevalent, humans must be able to interact with a
heterogeneous collection of humans and software agents.
Both humans and software agents can play diverse roles in
a system, with varying degrees of autonomy, initiative,
and authority across different tasks. Although many of
today's software agents commonly interact with humans,
these interactions are often in direct service to the human
in a one-on-one manner, much like a human's interaction
with a travel agent, for example. However, software
agents can also undertake long-term, autonomous
operations that serve human purposes as well, though not
through direct interaction with a human.

Humans need to interact with autonomous agents over
long-term operation for a variety of reasons including
monitoring, modifying goals, maintaining or repairing
underlying hardware or software, responding to
anomalies, and taking advantage of opportunities.
Research supporting human interaction with these types of
agents has received relatively little attention, however. As

more software agents are deployed for long-term
autonomous operation, the research challenge of enabling
agents and humans to work together as a complete system
becomes more important. To meet this challenge,
research must overcome issues such as limited visibility
into the agent's processing, mismatches between a
human's mental models and the agent's implementation
models, inadequate adjustability of the agent's autonomy,
lack of notification to the human about important events at
appropriate levels of abstraction, and a basic lack of
compatibility between a human's interface capabilities and
the interfaces provided by a software agent.

We have developed the Distributed Collaboration and
Interaction (DCI) system to address these difficulties in
human-agent interaction and to create an environment in
which humans and software agents together can form an
integrated multi-agent system. The initial motivation for
the DCI system arose from our experiences with deployed
intelligent control agents for NASA advanced life support
systems (Bonasso et al., 2002; Schreckenghost et al.,
1998). These intelligent control agents, developed using
an architecture known as 3T (Bonasso et al., 1997),
monitor and perform process control for regenerative life
support systems, which recover usable water or air, for
example, from the waste products created by biological
systems over time. Over months to years of continuous
operation of these agents, we discovered many
unaddressed needs for human interaction. These lessons
learned are detailed in (Schreckenghost et al., 2002b).
Through the DCI prototype described in this paper, we
have addressed and enhanced our understanding of these
interaction needs and begun to formulate solutions.

Further, we have recognized the need for and
provided support for interactions of groups of humans and
software agents that are coordinated at the level of the
organization they support. Based on our own experiences,
the NASA organization (considering mission objectives
and constraints) defines policies and protocols for
fulfilling human roles within the organization as well as
for the operation of software agents during the missions.
A similar requirement to support organizational needs
could be seen in the management of power plant

operations, for example, if automated control agents were
deployed for process control with possible monitoring and
intervention by human supervisors. These types of
organizations can be realized as heterogeneous human-
agent multi-agent systems. In these systems,
organizational policies and objectives require humans to
perform in various roles and to maintain a specified level
of situation awareness with respect to the automated
control agents and the underlying hardware they control.
In the course of their duties, humans must be able to
interact with and influence the software control agents.
The DCI system supports these organizational
requirements by providing an environment through which
humans can act as system agents with roles and tasks
managed by the organization along with software agents
who perform other operations in the organization. This
paper describes how the development of the DCI prototype
addressed unique challenges to apply automated planning
for organizational goals to human agents.

The DCI approach uses intermediate liaison agents
associated with each human to provide an interfacing
layer between the human and the rest of a multi-agent
system. These liaison agents have the purpose of
representing an individual human to the rest of the
software in the system while supporting a human-centric
and user-friendly interface for that human into the system.
We also use augmenting software associated with other
existing software in the multi-agent system (for example,
a centralized planner or a particular software agent or
group of these agents) to handle the human-interfacing
requirements related to that domain-centric software.
Although the domain-centric software must internalize
some basic human-interaction functionality such as
adjustable autonomy (Dorais et al., 1998), our approach
avoids overburdening resource-limited software agents,
whose processing may include time-critical tasks, with
tasks that are not directly related to their primary
organizational objectives. The augmenting software is
designed to integrate closely with the domain-specific
software and thus off-load much of the human-centric
processing.

This paper provides an overview of the DCI system
and a description of a software prototype that implements
many of the desired behaviors of the DCI environment.
This prototype is applied to support NASA engineers
working with intelligent control agents for advanced life
support systems. We provide an overview of this
application and a description of how the DCI prototype
supports human interaction with an intelligent control
agent within the context of organizationally defined roles
and interaction policies. We next describe the
implementation that manages the humans' roles and
activities. We then discuss some of the related research

that supports this work, and we conclude with a summary
and a discussion of research issues.

DCI Overview and Prototype

Our DCI prototype supports a number of human agents,
each with a set of daily activities to perform as mandated
by the organization, much as NASA mission tasks would
be mandated for crew members. Additionally, three of the
humans are responsible for handling anomalies that occur
in the Water Recovery System (WRS), a crew life support
system developed and tested at the Johnson Space Center
(JSC) that removes the organic and inorganic materials
from waste water to produce potable water. To handle
WRS anomalies, human agents must interact with the
WRS control agent. One human agent, the Prime, has
first responsibility for responding to problems in the WRS;
a second human agent, the Backup, has the job of taking
over if the Prime is unable to respond to the problem. The
Coordinator oversees the work of the other two human
agents and also serves as the secondary Backup. This
section provides an overview of the DCI system and
describes how the current DCI prototype supports these
human agents in interacting with the WRS control agent.

The philosophy behind the DCI system involves
creating an environment that supports human
collaboration and interaction with software agents and
also giving humans appropriate tools and interfaces to
participate effectively in these interactions. In short, we
are striving to provide a virtual environment in which the
human can interact naturally with software agents. The
DCI system is made up of three types of software (1)
augmenting software that integrates with domain-centric
software or software agents to provide a human-oriented
virtual multi-agent environment, (2) liaison agents that
manifest each human into this virtual environment, and
(3) user-interface software that is managed by the liaison
agents to provide a comfortable and effective interface for
the human to the multi-agent system.

Figure 1 depicts representative elements of a DCI
system The entities with black backgrounds (the human,
the WRS system and its control agent, and the multi-agent
planner) participate in, but are not part of, the DCI
environment. The following paragraphs describe the
function of each DCI entity in Figure 1 as well as how the
entity is instantiated and used in the DCI prototype.

The Conversion Assistant for Planning (CAP) and the
Event Detection Assistant (EDA) are representative pieces
of augmenting software in the DCI system. The CAP is
software that is tightly coupled and shares models with the
automated planner, thereby augmenting the planner’s
ability to interface with human agents. Our planner is a
hierarchical task net (HTN) planner known as AP that is

capable of automatically monitoring and updating its
plans (Elsaesser and Sanborn, 1990). AP evenly
distributes the workload among agents based on their
capabilities and reasons about metric time for scheduling.
The CAP’s functionality is discussed in detail in the
section on Planning for Human Agents. The EDA
monitors data produced by the WRS control system and
searches for patterns in this data that are of interest to the
humans for such activities as anomaly analysis and
performance assessment. The EDA is implemented using
the Complex Event Recognition Architecture (CERA), an
event detection system developed by I/Net. As specified
patterns are detected in the control data, the EDA
generates and broadcasts its own events about these data
patterns, which are represented at levels of abstraction
suited to human understanding.

Liaison agents are central to the DCI system because
they represent the human to other software agents and vice
versa. The liaison agents in DCI are called Attentive
Remote Interaction and Execution Liaison (ARIEL)
agents, in deference to Shakespeare’s Tempest character.
Although the ARIEL agents in the current DCI prototype
do not yet have explicit goals and desires, they do hold
explicit beliefs about the state of their human user, and
they exhibit many of the basic processing behaviors
desired for a complete ARIEL agent implementation in
the future. The beliefs held by an ARIEL agent are
managed by its State Management Service (SMS), which
takes input from many of ARIEL’s other services and
creates a coherent state model of the user, including
current activity, location, role, schedule, and health. The
SMS also interacts with its user by querying for state input
(such as schedule acknowledgements), when appropriate.
Other services represented in ARIEL’s design include:

• Notification Service (NS): The NS combines
information about the user’s current state and roles, the
organizational policies about information distribution
and situation-awareness requirements, and the user’s
own information preferences to determine if an
incoming notice or event is of interest and, if so, how to
inform the user. How to inform the user of a notice is
expressed as an assessment of the latency and focus of
attention (i.e., saliency) to be used when presenting the
information, and a selection of interface modalities
(e.g., computer display, pager, email) to use for this
presentation. The NS implementation and the
representation of specifications an organization or
individual may use to filter or present notices are
described in detail in (Schreckenghost et al., 2002a). In
the DCI prototype, the NS that is associated with the
human who has the Prime role ensures that he is
notified of important WRS anomaly events with high
saliency. However the Backup is allowed to continue
her current task without distraction because her NS
simply logs anomaly notices. Notices processed by the
DCI prototype include (1) events generated by the Event
Detection Assistant about the WRS control system, (2)
notices from the ARIEL agent to its user about ARIEL
requests such as the need for schedule
acknowledgement, and (3) events generated by the
ARIEL agents of other humans in the user’s group
about various human state changes, such as a location
change.

• Task Status Service (TSS): The TSS provides activity
tracking and plan management capabilities. In the DCI
prototype, the TSS (1) monitors the user for
acknowledgement of time-critical assigned activities
such as WRS repair tasks, (2) uses information
generated by the augmented planner to inform its user
when a planned task becomes ready to execute, (3)
monitors its user for evidence that critical tasks have
been initiated using location information or direct user
queries, and (4) provides a source of feedback to the
augmented planner about human progress or lack of
progress toward achieving a plan. The TSS helps the
ARIEL agent close the loop between the planner and a
human, which is especially important for time-critical
repair tasks in the DCI prototype application. The TSS
implementation is discussed further in the section on
Planning for Human Agents.

• Location Service (LS): The LS tracks human location
information including physical location and cyber
location, i.e., whether or not the user is online and
which display platforms she is currently using. In
addition, the location service uses the combination of
physical and cyber location information to infer an
overall assessment of the user’s presence, for example,

planner
(AP) WRS Life

Support
System

WRS control
agent

WRS Life
Support
System

WRS control
agent

Human

Conversion Assistant for Planning
(CAP)

GUI Situation Viewer

Event
Detection
Assistant

(EDA)

Command/
Authorize

(CAS)

Interrupt
Handle

(IHS)

Task
Status
(TSS)

Interactive
Procedure

(IPS)

Interactive
Event
(IES)

Notification
(NS)

Location
(LS)

User
Interface

(UIS)

State
Management

(SMS)

ARIEL

Figure 1. Representative elements of DCI architecture.

“Available-Remote-Online.” This location information
is provided through the State Management Service to
the other services and is used (1) by the Task Status
Service in tracking the initiation or completion status of
activities, (2) by the Notification Service in determining
which notification modality is currently most
appropriate, and (3) by the User Interface Service in
customizing the presentation of information. In the
DCI prototype, a user’s physical location is tracked
through log-in and log-out events within the DCI
environment (via static IP mapping). We are also in the
process of incorporating the use of GPS devices to track
physical location. Similar versions of location tracking
have been used successfully by other systems
(Chalupsky et al., 2001; Schmandt et al., 2000).

• User Interface Service (UIS): The UIS manages all
direct interaction with the user. It invokes different
modalities, such as display, pager, or email, to present
information in the manner most appropriate to the
user’s current state and task. It also manages the
overall state of information presented by any persistent
user interface (e.g., a graphical user interface, GUI,
versus a transient pager message) such that multiple
locally-managed views of this information will remain
consistent (e.g., multiple GUIs open on different display
platforms). In the DCI prototype, the UIS is capable of
sending emails, posting to and accepting information
from the DCI user interface GUIs discussed later in this
section, and accessing a simulated pager server.
Multiple interface modalities for posting information to
humans have been managed successfully in related
research projects such as (Schmandt et al., 2000). In
the future, we hope to incorporate increasingly natural
and more sophisticated human-agent interaction
mechanisms into this service.

The remaining ARIEL services are not yet implemented in
the DCI prototype:

• Command and Authorization Service (CAS): The CAS
supports the user in remotely interacting with mostly
autonomous agents who are tied to physical systems that
the user also influences, such as the underlying WRS
life support system hardware. “Commanding” refers to
a user’s action of issuing directives to the underlying
physical system (e.g., turning on a pump). Using DCI,
this commanding should be mediated through the
autonomous agent controlling the system, when
possible. The CAS (1) determines if the user is
authorized to command (i.e., access control), (2)
ensures command lock-outs or resolves command
conflicts when more than one user is interacting with
the system or the control agent (e.g., the WRS control
agent), and (3) reconfigures both the automation and

user interface in preparation for commanding (i.e.,
adjusting the autonomy of the WRS control agent).

• Interruption Handling Service (IHS): The IHS will
coordinate the actions of other services to minimize the
impact of interruptions on the user’s primary tasks (e.g.,
consider intrusiveness in the NS). Support for
interruption handling includes (1) determining when
the user should be interrupted and how intrusive the
interruption should be, (2) mapping the human concepts
of task status at interruption (delayed, deferred,
suspended) to the changes needed to update the plan by
an automated planner (e.g., goal changes, task
completion status changes), and (3) assisting the user in
managing multiple, concurrent threads of activity.

• Interactive Procedure Service (IPS): The IPS will assist
the user in temporarily modifying standard operating
procedures executed by the automated control software.

• Interactive Event Service (IES): The IES will assist the
user in interactively defining temporary, new
operational events and controlling automated
monitoring for these events.

The user interface software in the DCI system is critical
for providing humans with effective tools to participate in
the overall multi-agent system. The prototype’s user
interface software currently consists of GUIs that give a
user access to (1) her ARIEL agent’s current model of her
user state, (2) her schedule as planned and updated by the
augmented planner and as annotated with status
information by the Task Status Service, (3) the archive of
notices that her Notification Service has determined are
relevant, and (4) a high-level overview toolbar as shown
in Figure 2. Additional GUIs that are in the design stages
for the DCI prototype include (1) a view of the state of the
user’s group, and (2) a dialogue interface that allows the
user to interact conversationally with other human and
software agents, including the ARIEL agents of other
group members.

 Figure 2 shows the primary DCI user interface toolbar.
This toolbar is designed to be always visible on a small
section of the user’s display and is used for multiple
purposes. First, it provides buttons that allow a user to

Figure 2. DCI toolbar. Icons access additional GUIs

(user state, schedule, notices, group, conversation, and
logout).

access other DCI GUIs. Second, it provides the user with
“at a glance” information about important changes that
have recently occurred, to which the ARIEL agent is
drawing the user’s attention. In Figure 2, the schedule
icon has been highlighted with a red exclamation point
indicating a very important scheduling event, in this case
the insertion of a time-critical repair task to the user’s
schedule as the next task the user needs to perform. (This
icon actually flashes on and off and makes a sound in the
prototype to better draw the user’s attention.) The notice
icon in Figure 2 also draws the user’s attention to a lesser
extent by indicating that two highly important or urgent
notices are available. The toolbar shown in Figure 2 can
be used to quickly orient the user to the current
operational situation when she logs in to the DCI system
and to alert her to what has transpired while she was
offline. It also provides situation awareness as she works
at other tasks while logged in to the system. The toolbar
implementation uses saliency annotations from the
Notification Service and the Task Status Service to
determine whether to concentrate the user’s focus of
attention (with flashing icons and sounds) or to rely on the
user’s peripheral awareness to detect changes (with simple
icon changes as in (Cadiz et al., 2001)).

The Situation Viewer provides one further element
needed in an effective user interface for humans
interacting with intelligent control agents. In the DCI
prototype, the Situation Viewer summarizes complex
situations recognized by the Event Detection Assistant and
provides needed visibility into the operation of the WRS
control system. Previous work in viewing situations
focused on providing organized logs (Thronesbery et al.,
1999). This work integrates discrete and analog events at
multiple levels of abstraction provided as part of the
situation data structure.

The DCI prototype is implemented as a distributed
system of approximately 30 processes using both CORBA
and IPC (Simmons and Dale, 1997) for distributed
communications. The user interface software and most of
the ARIEL services are implemented in Java and have
been executed at various times on Linux, Windows, and
Macintosh systems. The CAP augmentation for the
planner, each Task Status Service, and the Event
Detection Assistant using CERA are implemented in Lisp
and execute on Linux systems.

This overview of the DCI prototype shows how the
DCI system supports human interaction with the WRS
intelligent control system. Although we limit our in-depth
discussion in the following section to applying automated

planning for humans, similar design and implementation
challenges arose for each piece of the prototype.

Planning for Human Agents

The DCI prototype explores the use of an automated
planner to manage human tasks from the perspective of
the NASA organization, for both daily tasks as well as for
unexpected tasks due to anomalies that arise from the
WRS operations. This section describes the overall
challenges we have observed for applying automated
planning to human agents and the approach taken in the
DCI prototype to explore possible solutions to these
challenges. Our initial exploration of these challenges in
the DCI prototype provides a step toward future, more
general solutions across application domains.

Applying an automated planner to human agents
poses interesting research issues because autonomous
planners do not integrate with humans in the same
manner as they do with other software agents, such as
layered control architectures like 3T (Bonasso et al.,
1997). These issues arise from the different ways in
which automated agents and humans treat the plan.
Acceptance of a plan by a software agent like 3T usually
implies commitment to perform all tasks in the plan in a
pre-specified manner. On the other-hand, acceptance of a
plan by a human agent occurs at a higher level of
abstraction and implies intent to complete the plan but
makes less commitment on how and when the tasks will
be accomplished. In addition, humans and software
agents interact with planners differently. Software agents
can be very responsive, even for low-level operations. For
example, the WRS control agent will acknowledge every
directive and execute plan steps as soon as possible. In
contrast, humans are less responsive and would find
frequent interaction with the planner burdensome. For
example, humans may fail to acknowledge tasks before
starting to execute them or fail to provide evidence that
tasks have been completed. Further, software agents can
easily understand a planner’s representation of a plan
through common semantics and data structures. However,
a human, concerned primarily with what she must do and
when, needs a different representation of the generated
plan. For example, compare the view of a plan generated
by AP in Figure 3, to the personalized daily schedule view
of a similar plan provided through the DCI prototype for a
given user in Figure 4.

The DCI system accommodates the differences
between planning for software agents and planning for
human agents by adding software to mediate between the
human and the automated planner perspectives. By
encapsulating the capabilities supporting each perspective
in its own process, we handle separately (1) integration
with the planner perspective and (2) integration with the
human perspective. The interaction among DCI
components providing this mediation for planning is
shown in Figure 5. Note that multiple humans would
correspond to multiple ARIEL agents in this figure, all of
whom interact with a single planner and its associated
augmentation software.

DCI handles integration with the planner perspective
through the Conversion Assistant for Planning (CAP).
The CAP conditions plans generated by the planner for
use by humans and their ARIEL agents, and it converts
information coming from humans and their ARIEL agents
to the planner’s perspective. Beyond these interpretation
duties, the CAP is responsible to monitor the execution of
the group plan and to initiate updating the plan (e.g.,
prompting the planner to replan) when the domain
situation changes or when agents become unavailable.

DCI handles integration with the human perspective
through the ARIEL agent and corresponding user
interfaces. ARIEL’s Task Status Service (TSS) is
responsible to track human activities and to model when
new activities are ready to execute and when ongoing
activities are completed or overcome by events. The State
Management Service (SMS) creates a user-centric model
of the plan provided by CAP and annotates this model
with status information from TSS. The User Interface
Service (UIS) uses the SMS model of the plan to generate
a schedule model that is the basis for the schedule view
seen by the user. The ARIEL agent serves both the
human, by providing a useable schedule interface (as in
Figure 4), and the planner, by providing feedback about
task completion and acknowledgment, which humans do
not typically provide in a manner that is easily used for
computation.

Related Work

To integrate humans into a multi-agent system alongside
software agents, we have leveraged existing research
across a wide range of areas including teaming and
human-agent teams (Chalupsky et al., 2001; Payne et al.,
2000), user interfaces and underlying applications (Cadiz
et al., 2001; Schmandt et al., 2000), characteristics of
autonomous agents including adjustable autonomy (Dorais
et al., 1998; Scerri et al., 2001), and planning tools and
mixed-initiative planning (Ferguson and Allen, 1998;
Knoblock et al., 2001; Myers et al., 2002). In particular,

Figure 3. A typical group plan generated for four agents by the automated planner AP (Elsaesser and Sanborn,
1990). The hierarchy is read from left (most abstract) to right (plan leaves). Highlighted tasks are ready to be

executed.

Figure 4. DCI personalized schedule view. Plans from
the automated planner appear to the user in a natural
form. Tool tips over the activity names show the status
of an activity currently modeled by the ARIEL agent.

planner

H
um

an

CAP

G
U

I

TSS

UIS

SMS

ARIEL

Figure 5. Information flow among DCI components
mediating between a human and an automated planner

we have examined successful implementations of
interaction between humans and software agents as
demonstrated in the Electric Elves (Chalupsky et al.,
2001) and MokSAF (Payne et al., 2000) projects.

Few research efforts in AI planning are focused on
interpreting the output of an automated planner for a
human agent to whom the plan applies. There have been
many efforts to make it easier for a human planner to use
automated planning tools (Knoblock et al., 2001; Myers et
al., 2002) and mixed-initiative planning (Ferguson and
Allen, 1998). Also, several planners, like AP (Elsaesser
and Sanborn, 1990), have been designed to manage the
activities of large groups of humans such as military units,
but not individuals (Tate et al., 2000; Wilkins and Myers,
1998). The output of NASA's automated aids for planning
the daily activities of shuttle and station crew is either
interpreted by another human (e.g., the CapCom) or
transformed into paper schedules managed by humans
(JSC, 1999). In contrast, the DCI system needs a planner
that not only generates and updates plans for individual
humans, but also interprets the plans so that the humans
have a ready understanding of their current and future
tasks (Schreckenghost and Hudson, 2001).

Conclusions

This paper describes the Distributed Collaboration and
Interaction (DCI) system design and an implemented
prototype of that design. DCI aids human interaction
with complex, mostly autonomous, domain-centric
software agents in the context of an integrated multi-agent
system supporting organizational goals and policies. In
addition to an overview of DCI, we provide a detailed
description of the challenges we faced to apply multi-
agent planning to human agents. Through the DCI
environment, humans can become part of the multi-agent
world and act naturally within it. As autonomous
software agents become more common, both in
environments that highly regiment the activity of human
agents such as NASA mission support and in every-day
environments such as smart houses, supporting a human’s
ability to interact with these software agents becomes
increasingly important.

In the development of the DCI prototype, we have
addressed many interaction challenges including (1)
mapping models and data designed for use by software
(and thus containing artifacts of implementation choices)
to human-usable information, (2) balancing an
organization’s need for human awareness of software
agent activities with the need to avoid both information
and cognitive overload, and (3) providing necessary
feedback about human state to automated software that is
difficult or annoying for humans to provide manually.

These interactions are directed both toward the
human and toward other software agents. Our next step is
to provide fully interactive multi-step interactions between
humans and autonomous control agents.

We have seen the need for integration of humans with
mostly autonomous software agents through our
experiences with autonomous control agents for NASA
life support systems. Supporting this type of multi-agent
system, including planning for humans as agents, is a
relatively novel endeavor. Through our work to prototype
the DCI system, we hope to discover a set of design
principles for building systems like this in the future.
Thus far, we have seen that:

• Neither thin “wrappers” around software agents nor
sophisticated user interfaces are enough to support
human interaction with complex software agents. Our
experience indicates that active and vigilant processing,
based on knowledge of the complexity of the software
agents as well as knowledge of the needs of the human,
is required to allow the human to manifest herself
effectively into a multi-agent world. The concept of a
liaison agent fits this role well.

• For effective interaction, complex software agents must
implement some human-centric functionality such as
the capability for adjustable autonomy allowing humans
to supervise and adjust the agents’ behavior if
necessary. However, much of the human-centric
processing can be handled by tightly coupled external
software to avoid overloading the software agents and
degrading their performance on their primary task.

Based on our experiences, human interaction with
complex software agents (who themselves interact with
one another and who have their own, independent goals)
has previously been ad hoc and uncoordinated, and it has
exhibited impoverished communication. We have
designed the DCI system to address these issues and
applied a DCI prototype in a NASA-oriented domain.
This DCI prototype represents an important step toward
integrating humans with multi-agent systems in the
future.

Acknowledgements

We want to acknowledge the support of Dr Michael
Shafto, the manager of the Human-Centered Computing
topic in NASA's Intelligent Systems Program, under
which this work was done.

References

Bonasso, R. P., Firby, J. R., Gat, E., Kortenkamp, D., Miller, D.
P., and Slack, M. G. 1997. Experiences with an Architecture
for Intelligent, Reactive Agents. Journal of Experimental and
Theoretical Artificial Intelligence 9: 237-256.

Bonasso, R. P., Kortenkamp, D., and Thronesbery, C. 2002.
Intelligent Control of A Water Recovery System: Three years
in the Trenches. AI Magazine 24 (1).

Cadiz, J., Venolia, G. D., Jancke, G., and Gupta, A. 2001.
Sideshow: Providing Peripheral Awareness of Important
Information, Technical Report, MSR-TR-2001-83, Microsoft
Research, Redmond, WA.

Chalupsky, H., Gil, Y., Knoblock, C. A., Lerman, K., Oh, J.,
Pynadath, D. V., Russ, T. A., and Tambe, M. 2001. Electric
Elves: Applying Agent Technology to Support Human
Organizations. In Proceedings of the Innovative Applications
of Artificial Intelligence. Seattle, WA.

Dorais, G. A., Bonasso, R. P., Kortenkamp, D., Pell, B., and
Schreckenghost, D. 1998. Adjustable Autonomy for Human-
Centered Autonomous Systems on Mars. In Proceedings of the
Mars Society Conference.

Elsaesser, C. and Sanborn, J. 1990. An Architecture for
Adversarial Planning. IEEE Transactions on Systems, Man,
and Cybernetics 20(1): 186-194.

Ferguson, G. and Allen, J. F. 1998. TRIPS: An Integrated
Intelligent Problem-Solving Assistant. In Proceedings of the
Fifteenth National Conference on Artificial Intelligence
(AAAI-98). Madison, WI.

JSC. 1999. Consolidated Planning Systems (CPS) Users Manual,
Johnson Space Center, Houston, TX.

Knoblock, C. A., Minton, S., Ambite, J. L., Muslea, M., Oh, J.,
and Frank, M. 2001. Mixed Initiative Multi-source
Information Assistants. In Proceedings of the Proceedings of
the10th International World Wide Web Conference,
www10.org/cdrom/papers/frame.html. Hong Kong.

Myers, K. L., Tyson, M. W., Wolverton, M. J., Jarvis, P. A., Lee,
T. J., and desJardins, M. 2002. PASSAT: A User-Centric
Planning Framework. In Proceedings of the 3rd International
NASA Workshop on Planning and Scheduling for Space.
Houston, TX: Institute for Advanced Interdisciplinary
Research.

Payne, T. R., Sycara, K., and Lewis, M. 2000. Varying the User
Interaction within Multi-Agent Systems. In Proceedings of the
Fourth International Conference on Autonomous Agents, 412-
418. Barcelona, Catalonia, Spain: ACM Press.

Scerri, P., Pynadath, D. V., and Tambe, M. 2001. Adjustable
Autonomy in Real-World Multi-Agent Environments. In
Proceedings of the Autonomous Agents, 300-307. Montreal,
Canada: ACM Press.

Schmandt, C., Marmasse, N., Marti, S., Sawhney, N., and
Wheeler, S. 2000. Everywhere Messaging. IBM Systems
Journal 39(3&4): 660-677.

Schreckenghost, D. and Hudson, M. B. 2001. Automation in
Context: Planning Manned Space Exploration Activities. In
Proceedings of the ISAIRAS. Montreal, Canada.

Schreckenghost, D., Martin, C. E., and Thronesbery, C. 2002a.
Specifying Organizational Policies and Individual Preferences
for Human-Software Interaction. In Proceedings of the AAAI
Fall Symposium on Etiquette for Human-Computer Work
(Technical Report FS-02-02), 32-39. North Falmouth, MA:
AAAI Press.

Schreckenghost, D., Ryan, D., Thronesbery, C., Bonasso, R. P.,
and Poirot, D. 1998. Intelligent Control of Life Support
Systems for Space Habitats. In Proceedings of the Tenth
Conference on Innovative Applications of Artificial
Intelligence, 1140-1145. Madison, WI: AAAI Press / The MIT
Press.

Schreckenghost, D., Thronesbery, C., Bonasso, R. P.,
Kortenkamp, D., and Martin, C. E. 2002b. Intelligent Control
of Life Support for Space Missions. IEEE Intelligent Systems
17 (5): 24-31.

Simmons, R. and Dale, J. 1997. Inter-Process Communication: A
Reference Manual. IPC Version 6.0: CMU Robotics Institute.

Tate, A., Dalton, J., and Levine, J. 2000. O-Plan: A Web-based
AI Planning Agent. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence, 1131-1132. Austin, TX:
AAAI Press.

Thronesbery, C., Christoffersen, K., and Malin, J. 1999.
Situation-Oriented Displays of Shuttle Data. In Proceedings of
the Human Factors and Ergonomics Society 43rd Annual
Meeting. Houston, TX.

Wilkins, D. and Myers, K. 1998. A Multiagent Planning
Architecture. In Proceedings of the Artificial Intelligence
Planning Systems, 154-162. Pittsburg, PA.

