
AAAI-97 Tutorial SP2Nayak/Williams SP2-73

Logic-based Truth Maintenance Systems

AAAI-97 Tutorial SP2Nayak/Williams SP2-74

Logic-based Truth Maintenance
System (LTMS)
• Incrementally maintains consequences of a propositional

theory Σ [Doyle 79; McAllester 80]

– incrementally manages addition and deletions from Σ
– ideal for real-time propositional reasoning

• Σ is a set of propositional clauses
– a clause is disjunction of propositional literals
– a unit clause is a clause with exactly one disjunct
– a literal is a proposition or the negation of a proposition

¬ rain ∨ ¬ umbrella ∨ dry
– a clause can be read as an implication in different ways

rain Λ umbrella ⇒ dry
rain Λ ¬ dry ⇒ ¬umbrella

AAAI-97 Tutorial SP2Nayak/Williams SP2-75

Example: DS-1 bus communication

PDE SRU PDU GDE PASM DSEU PEPE

1553 bus
BC

Flight
Computer

Commands

Data

• Some of the clauses describing bus communication
C1: ¬ nci ∨ ¬ a ∨ nco
C2: ¬ ia ∨ nco
C3: ¬ ok ∨ a

C4: ¬ rf ∨ ia
C5: ¬ uf ∨ ia
C6: ¬ ok ∨ ¬ rf

C7: ¬ ok ∨ ¬ uf
C8: ¬ rf ∨ ¬ uf
C9: ¬ a ∨ ¬ ia

BC health: ok, rf, uf
No input cmd: nci

BC activity: a, ia
No output cmd: nco

AAAI-97 Tutorial SP2Nayak/Williams SP2-76

Generic LTMS interface

• Updating the clauses in Σ
– add-clause (clause, Σ)
– delete-clause (clause, Σ)

• Propositional inference
– consistent? (Σ)
– follows-from? (literal, Σ)

• Justification structure
– supporting-clause (literal, Σ)
– supporting-literals (literal, Σ)

• the supporting-clause together with the supporting-literals entail literal
• each literal in supporting-literals follows from Σ
• ⊥ is a special literal denoting a contradiction

AAAI-97 Tutorial SP2Nayak/Williams SP2-77

Using the LTMS in MI and MR

• MI
– searches for component mode assignments that are consistent with the

observations

• MR
– searches for component mode assignments that are entail the goal

• LTMS database Σ contains clauses describing component
behavior in each mode

• MI and MR add and delete clauses corresponding to
assumptions that a component is in a particular mode
– MI checks that Σ is consistent
– MR checks that the goal follows from Σ
– justification structure is used to generate conflicts from an inconsistent Σ

AAAI-97 Tutorial SP2Nayak/Williams SP2-78

LTMS labels

• The LTMS labels each proposition true, false, or unknown
– if p is labeled true (false), then Σ logically entails p (¬p)
– labeling algorithm is sound, but not necessarily complete
– a positive (negative) literal is true if and only if the corresponding

proposition is true (false)

¬p ∨ ¬q ∨ r
s ∨ p

¬u ∨ v

¬s
q

u ∨ v

Σ Labels
p: true
q: true
r: true
s: false

u: unknown
v:unknown

AAAI-97 Tutorial SP2Nayak/Williams SP2-79

Conflicting clauses

• A conflicting clause is one in which all literals are labeled
false
– ¬p ∨ ¬q ∨ r is a conflicting clause if the labels are

p: true, q: true, r: false

• Existence of a conflicting clause means that Σ is inconsistent
– since LTMS labels are sound, a conflicting clause is unsatisfiable

• If Σ is inconsistent, supporting-clause(⊥, Σ) returns a
conflicting clause and supporting-literals(⊥, Σ) returns the set
of literals in that clause

AAAI-97 Tutorial SP2Nayak/Williams SP2-80

Unit propagation: the basic idea

• Let C be the clause l1 ∨ l2 ∨…∨ ln
– C can be viewed as the implication

¬l1 Λ ¬l2 Λ … Λ ¬ln-1 ⇒ ln

• Suppose literals l1, l2, …, ln-1 are labeled false and ln is labeled
unknown
– antecedent of the above implication version of clause C is true
– hence, clause C implies that the consequent (ln) must be true
⇒ ln’s label must be changed from unknown to true

• Example
– consider clause ¬p ∨ ¬q ∨ r with labels p: true, q: unknown, r: false
– unit propagation changes q’s label to false

AAAI-97 Tutorial SP2Nayak/Williams SP2-81

Label inference and proposition support

• Let p be the proposition labeled unknown occurring in clause
– clause has just been removed from fringe, and hence p is unique

• If p occurs as a positive (negative) literal in clause, its label is
changed to true (false)

• clause and other propositions in clause are said to support p

p ∨ q ∨ ¬ r

rtrue

qfalse

p true

AAAI-97 Tutorial SP2Nayak/Williams SP2-82

LTMS after initialization

C7: ¬ ok ∨ ¬ uf

C8: ¬ rf ∨ ¬ uf

C3: ¬ ok ∨ a

C6: ¬ ok ∨ ¬ rf

C4: ¬ rf ∨ ia

C9: ¬ a ∨ ¬ ia

C2: ¬ ia ∨ nco

C1: ¬ nci ∨ ¬ a ∨ nco

uf

ok

rf

a

ia

nci

nco

unknown

C10: ok

unknown

unknown unknown

unknown
unknown

unknown

Fringe

C11: rf

1

2

2

1

2

2

3

2

2 2

Unknown literal count

AAAI-97 Tutorial SP2Nayak/Williams SP2-83

Propagating C10

C7: ¬ ok ∨ ¬ uf

C8: ¬ rf ∨ ¬ uf

C3: ¬ ok ∨ a

C6: ¬ ok ∨ ¬ rf

C4: ¬ rf ∨ ia

C9: ¬ a ∨ ¬ ia

C2: ¬ ia ∨ nco

C1: ¬ nci ∨ ¬ a ∨ nco

uf

ok

rf

a

ia

nci

nco

unknown

C10: ok

unknown unknown

unknown
unknown

unknown

Fringe

C11: rf

0

1

2

1

1

1

3

2

2 2

true

Supports

AAAI-97 Tutorial SP2Nayak/Williams SP2-84

C8: ¬ rf ∨ ¬ uf

Propagating C7

C7: ¬ ok ∨ ¬ uf

C3: ¬ ok ∨ a

C6: ¬ ok ∨ ¬ rf

C4: ¬ rf ∨ ia

C9: ¬ a ∨ ¬ ia

C2: ¬ ia ∨ nco

C1: ¬ nci ∨ ¬ a ∨ nco

uf

ok

rf

a

ia

nci

nco

unknown

C10: ok

false unknown

unknown
unknown

unknownC11: rf

0

0

1

1

1

1

3

2

2 2

true

FringeSupportstrue literal

AAAI-97 Tutorial SP2Nayak/Williams SP2-85

Propagating C6

C8: ¬ rf ∨ ¬ uf

C7: ¬ ok ∨ ¬ uf

C3: ¬ ok ∨ a

C6: ¬ ok ∨ ¬ rf

C4: ¬ rf ∨ ia

C9: ¬ a ∨ ¬ ia

C2: ¬ ia ∨ nco

C1: ¬ nci ∨ ¬ a ∨ nco

uf

ok

rf

a

ia

nci

nco

unknown

C10: ok

false unknown

unknown
unknown

C11: rf

0

0

1

0

0

1

3

2

1 2

true

FringeSupportstrue literalConflicts

false

AAAI-97 Tutorial SP2Nayak/Williams SP2-86

Unit propagation at the fringe

• Unit propagation takes place at the fringe, which consists of all
clauses that have
– exactly one literal labeled unknown
– all other literals labeled false

• Basic unit propagation algorithm
– select a clause from the fringe and propagate until the fringe is empty

or a conflicting clause is detected

AAAI-97 Tutorial SP2Nayak/Williams SP2-87

Unit propagation algorithm

function compute- labels (Σ)
Initialize all labels to unknown
Set Σ’s fringe to Σ’s unit clauses, and Σ’s conflicts to the empty set
propagate (Σ)

end compute-labels

function propagate (Σ)
while Σ’s fringe is non-empty and Σ’s conflicts is empty do

Remove a clause from Σ’s fringe
Infer a new label using clause
Update Σ’s fringe and conflicts with the newly propagated label

endwhile
end propagate

AAAI-97 Tutorial SP2Nayak/Williams SP2-88

Updating fringe and conflicts

• fringe and conflicts updated when a proposition’s label changes
– only clauses in which the proposition occurs can update fringe or conflicts

• Membership in fringe and conflicts determined incrementally
– track the count of literals in the clause labeled unknown

• decrement (increment) the count when an unknown (true or false) literal
becomes true or false (unknown)

– track whether the clause is satisfied (i.e., contains a literal labeled true)

⇒ A clause is added to (removed from) the fringe if the unknown
literal count becomes (changes from) 1 and it is not (or it is)
satisfied

⇒ A clause is added to (removed from) the conflicts if the unknown
literal count becomes (changes from) 0 and it is not (or it is)
satisfied

AAAI-97 Tutorial SP2Nayak/Williams SP2-89

Well-founded support

• Proposition supports generated by unit propagation form a
directed acyclic graph

⇒ Unit propagation produces well-founded support
• Non-well-founded support contains cycles in the support graph

x

C1: ¬ x∨ y
y

C2: x∨ ¬ y

true true

AAAI-97 Tutorial SP2Nayak/Williams SP2-90

Implementing the generic interface

• consistent? (Σ)
– returns true iff Σ has no conflicts after unit propagation terminates

• follows-from? (literal, Σ)
– returns literal’s label after unit propagation terminates

• supporting-clause (literal, Σ)
supporting-literals (literal, Σ)
– returns the clause and literals, respectively, that support literal after unit

propagation terminates

AAAI-97 Tutorial SP2Nayak/Williams SP2-91

Incrementally modifying Σ

• add-clause (clause, Σ)
– update clause’s unknown literal count and whether it is satisfied
– update Σ’s fringe and conflicts appropriately
– call propagate (Σ)
⇒need only do propagations (directly or indirectly) dependent on clause

• delete-clause (clause, Σ)
– follow the support structure to set the label of all propositions (directly

or indirectly) supported by clause to unknown
• update Σ’s fringe and conflicts as labels are changed

⇒only propagations (directly or indirectly) dependent on clause are
undone

– call propagate (Σ)

AAAI-97 Tutorial SP2Nayak/Williams SP2-92

C4: ¬ rf ∨ ia

Before deleting C11

C8: ¬ rf ∨ ¬ uf

C7: ¬ ok ∨ ¬ uf

C3: ¬ ok ∨ a

C6: ¬ ok ∨ ¬ rf

C9: ¬ a ∨ ¬ ia

C2: ¬ ia ∨ nco

C1: ¬ nci ∨ ¬ a ∨ nco

uf

ok

rf

a

ia

nci

nco

unknown

C10: ok

false

unknown

C11: rf

0

0

1

0

0

0

2

0

0 1

true

FringeSupportstrue literalConflicts

true

true

false

AAAI-97 Tutorial SP2Nayak/Williams SP2-93

After deleting C11

C4: ¬ rf ∨ ia

C8: ¬ rf ∨ ¬ uf

C7: ¬ ok ∨ ¬ uf

C3: ¬ ok ∨ a

C6: ¬ ok ∨ ¬ rf

C9: ¬ a ∨ ¬ ia

C2: ¬ ia ∨ nco

C1: ¬ nci ∨ ¬ a ∨ nco

uf

ok

rf

a

ia

nci

nco

unknown

C10: ok

false

unknown

0

0

1

1

0

2

0

1 1

true

FringeSupportstrue literal

true

false

unknown

