
AAAI-97 Tutorial SP2Williams/Nayak SP2-31

Model-based Configuration Management
using State-free Models

AAAI-97 Tutorial SP2Williams/Nayak SP2-32

Foundation:
Model-based Optimal Control

s: (hidden) state s’: estimated state f: system state eqns
o: observables µ: control actions g: output function
γ: reference traj. C: cost Μ : feasible actions

µ = argmin C(s’, γ, µ’)
µ’ ∈ Μ

Controller

Plant

State
estimator

input
regulator

s’(t)

µ(t)

f
s(t)

g
o(t)

γ(t)ρρ

AAAI-97 Tutorial SP2Williams/Nayak SP2-33

We consider a sub family of model-
based optimal controllers where...

Controller

Plant

• s(t), s’(t), o(t), γ(t), µ(t) have discrete, finite domains and
time t is discrete.

• f and g are specified declaratively.
• the estimator and regulator are implemented as queries to a
fast, best first, propositional inference kernel.

Mode
estimator

mode
regulators’(t)

µ(t)

f
s (t)

g
o(t)

γ(t)

µ = argmin C(s’, γ , µ’) s.t. µ’ ∈ Μ

AAAI-97 Tutorial SP2Williams/Nayak SP2-34

A family of increasingly powerful
deductive model-based optimal controllers
• Step 1: Model-based configuration management

with a partially observable state-free plant.

• Step 2: Model-based configuration management
with a dynamic, concurrent plant.

• Step 3: Model-based executive with a reactive planner, and
an indirectly controllable dynamic, concurrent plant.

AAAI-97 Tutorial SP2Williams/Nayak SP2-35

Modeling the Plant

System S is a tuple (Π, Σ) [Williams & Nayak 96b]

• Π : set of variables ranging over finite domains
– state variables (Πs)

• values are partitioned into nominal and failure values

– control variables (Πc)
– dependent variables (Πd)
– observable variables (Πo)

• Σ : set of feasible assignments

Specification ρΣ of Σ is in propositional logic.
• propositions are of the form yk = ek

– yk is a variable in Π, and ek is in yk’s domain
– Σ is the set of assignments that satisfy ρΣ

AAAI-97 Tutorial SP2Williams/Nayak SP2-36

Specifying a valve

• Variables Π = {mode, fin, fout, pin, pout }
– mode ranges over {open, closed, stuck-open, stuck-closed}
– fin, and fout range over {positive, negative, zero}
– pin, and pout range over {high, low, nominal}

• Specifying Σ with ρΣ
mode = open ⇒ (pin = pout) Λ (fin = fout)
mode = closed ⇒ (fin = zero) Λ (fout = zero)
mode = stuck-open ⇒ (pin = pout) Λ (fin = fout)
mode = stuck-closed ⇒ (fin = zero) Λ (fout = zero)

AAAI-97 Tutorial SP2Williams/Nayak SP2-37

Configuration System (S, γ)

• S is a system (Π, Σ)
• γ : g0, g1 … , called goal configurations,

is a sequence of propositional formulae on Π.

(S, γ) generates a configuration trajectory

σ : s0, s1 …

• si ∈ Σ
• si+1 satisfies gi or contains a failure value not in si

AAAI-97 Tutorial SP2Williams/Nayak SP2-38

Model-based Configuration Manager

• C incrementally generates a control sequence µ : µ 0, µ 1 … ,
such that C and S together form a configuration system

• o are the observables (values for Πo)
• µi are control values (values for Πc)

– in this part of the tutorial we assume that, in the absence of failures,
there exist procedures to control nominal values of all state variables

Plant S

Manager C

o µ

γ
ρΣ

AAAI-97 Tutorial SP2Williams/Nayak SP2-39

Mode identification and reconfiguration

Configuration management achieved by
• Mode identification

– identifies the system state based only on observables

• Mode reconfiguration
– reconfigures the system state to achieve goals

Plant S

Mode
ident.

mode
reconfig.

µ(t)

f
s(t)

g
o(t)

γ(t)

s’(t)

ρΣ ρΣ

AAAI-97 Tutorial SP2Williams/Nayak SP2-40

Consistency-based diagnosis as
mode identification
• [Davis 84; Genesereth 84; de Kleer & Williams 87; Reiter 87; Hamscher et. al. 92]

• Each component has an associated state variable
– values partitioned into nominal values and failure values

• Mode identification involves finding state variable
assignments consistent with the observations
– each state variable can be assigned either the most recently commanded

nominal value or one of the failure values

AAAI-97 Tutorial SP2Williams/Nayak SP2-41

Example: Cassini propulsion system

Helium tankHelium tank

Fuel tankFuel tankOxidizer tankOxidizer tank

MainMain
EnginesEngines

Pressure1 = nominal
Flow1 = zero

Pressure2= nominal
Flow2 = positive

Acceleration = zero

AAAI-97 Tutorial SP2Williams/Nayak SP2-42

Problem decomposition using conflicts

Helium tankHelium tank

Fuel tankFuel tankOxidizer tankOxidizer tank

MainMain
EnginesEngines

Flow 1= zero Conflict from observation
Flow1 = zero

AAAI-97 Tutorial SP2Williams/Nayak SP2-43

Pressure1 = nominal

More conflicts

Conflict from observations
Pressure1 = nominal
Pressure2 = nominal
Acceleration = zero

Pressure2= nominal

Acceleration = zero

Helium tankHelium tank

Fuel tankFuel tankOxidizer tankOxidizer tank

MainMain
EnginesEngines

AAAI-97 Tutorial SP2Williams/Nayak SP2-44

A candidate covers each conflict

Helium tankHelium tank

Fuel tankFuel tankOxidizer tankOxidizer tank

MainMain
EnginesEngines

Pressure1 = nominal
Flow1 = zero

Pressure2= nominal
Flow2 = positive

Acceleration = zero

Each Conflict
Discovered
Focuses the
Remaining Search

Single faults are
the intersection of
the conflicts

AAAI-97 Tutorial SP2Williams/Nayak SP2-45

Mode reconfiguration

• Each component has an associated control variable
– in the absence of failures, each control variable directly controls the

nominal value of the corresponding state variable

• Mode reconfiguration involves finding control variable
assignments such that the goal is entailed

⇒ Equivalently, mode reconfiguration involves finding a set of
component modes that entail the goal

AAAI-97 Tutorial SP2Williams/Nayak SP2-46

Reconfiguring to restore thrust

Current state

Possible reconfigurations

AAAI-97 Tutorial SP2Williams/Nayak SP2-47

Conflicts focus search

• Conflicts are generated when a subset of the modes entail the
negation of the goal

AAAI-97 Tutorial SP2Williams/Nayak SP2-48

Statistically Optimal
Configuration Management
Statistical Mode Identification [deKleer & Williams 86]

• p(si | oi) = p(oi | si) p(si) / p(oi) Bayes Rule
∝ p(oi | si) p(si)

• p(oi | si) is approximated from the model
– p(oi | si) = 1 if si entails oi

– p(oi | si) = 0 if si and oi is inconsistent
– p(oi | si) = ? otherwise

Optimal Mode Reconfiguration
µi+1 = argmin C(si , µi+1’) s.t. µi+1’ entails the goal

AAAI-97 Tutorial SP2Williams/Nayak SP2-49

MI and MR performance

Failure
scenario

MI time
(Sparc 5 in sec)

MR time
(Sparc 5 in sec)

EGA preaim 2.2 1.7

BPLVD 2.7 2.9

IRU 1.5 1.6

EGA burn 2.2 3.6

ACC 2.5 1.9

ME too hot 2.4 3.8

Acc low 5.5 6.1

Number of components: 80
Number of clauses: 11101

AAAI-97 Tutorial SP2Williams/Nayak SP2-50

Diagnosis of Combinatorial Circuits

Device # of components Time on Sparc 2 (sec)

c17 6 0.1
c432 160 4.7
c499 202 4.5
c880 383 4.0

c1355 546 12.3
c1908 880 22.8
c2670 1193 28.8
c3540 1669 113.3
c5315 2307 61.2
c7552 3512 61.5

AAAI-97 Tutorial SP2Williams/Nayak SP2-51

Solution: Part 3
Risc-like Best-first, Deductive Kernel

• Tasks and models compiled into propositional logic queries
• Conflicts dramatically focus search
• Careful enumeration grows agenda linearly
• ITMS efficiently tracks state changes in truth assignments

generate
successor
generate
successor

AgendaAgenda TestTest
OptimalOptimal
feasiblefeasible
solutionssolutions

ConflictsConflicts

IncorporateIncorporate
conflictsconflicts

CheckedChecked
solutionssolutions

propositional
ITMS

propositional
ITMS

conflict
database
conflict
database

General
deduction
CAN achieve
reactive time
scales

