
A Comparison of Techniques for Scheduling Fleets of Earth-Observing
Satellites

Al Globus
CSC

NASA Ames

James Crawford
RIACS

NASA Ames

Jason Lohn
NASA Ames

Anna Pryor
NASA Ames

Abstract

Earth-Observing Satellite (EOS) scheduling is a com-
plex real-world domain that is representative of a broad
class of over-subscription scheduling problems. Over-
subscription problems arise in domains where the re-
quests for a facility exceed the capacity of the facil-
ity on a variety of dimensions (e.g., available time,
data capacity, power, etc.). Oversubscription problems
arise in a wide variety of NASA and terrestrial domains
and are an important class of scheduling problems be-
cause such facilities often represent large capital invest-
ments. We have run experiments comparing multiple
variants of the genetic algorithm, stochastic hill climb-
ing, simulated annealing, squeaky wheel optimization
and iterated sampling on two realistically-sized mod-
els of the EOS scheduling problem. These are imple-
mented as permutation-based methods; methods that
search in the space of priority orderings for observa-
tion requests and evaluate each permutation by using
it to drive a greedy scheduler. Simulated annealing per-
forms best and simple mutation operators outperform
our squeaky (more intelligent) operator. Furthermore,
taking smaller steps towards the end of the search im-
proves performance.

Introduction
A growing fleet of scientific, military, and commercial
Earth observing satellites (EOS) circles the globe. Al-
though there are approximately 60 EOS satellites in
orbit today, image collection is nearly always scheduled
separately for each satellite with manual coordination,
if any. Some studies (Globus et al. 2002) (Rao, Soma,
& Padmashree 1998) have suggested that automatic co-
ordination of multiple satellites can be beneficial, but
the best scheduling techniques to use is not clear. The
problem is complicated by the fact that EOS schedul-
ing is subject to multiple complex constraints, includ-
ing power, thermal, data capacity, and the limited time
each satellite spends over each target. When we con-
sider the total number of observations that can be per-
formed by a satellite constellations and the number of
options (in terms of time windows) there are for each
observation, we find that the full search space for EOS
scheduling is quite large.

More importantly from a research point of view, EOS

scheduling is one instance of a larger class of over-
subscription scheduling problems. These problems are
characterized by a large number of requests for a scarce
resource that must be planned or scheduled subject
to a complex set of constraints. In addition to EOS,
such problems include scheduling planetary probes and
rovers, telescope scheduling, scheduling the deep space
network, scheduling wind tunnels or other test facili-
ties, scheduling supercomputers, etc. In general, over-
subscription problems arise when requests for a cap-
itally intensive facility need to be scheduled so as to
optimize productivity subject to a complex set of oper-
ational constraints.

Our work focuses on permutation-based approaches
to over-subscription problems. The key insight under-
lying such approaches is that if we could greedily sched-
ule the EOS observation requests in an optimal order
then we would produce an optimal schedule.1 Thus a
greedy scheduler allows us to search the space of prior-
ity vectors (aka permutations) rather than the space of
schedules. This change of representation has two key
advantages: First, and most importantly, the greedy
scheduler can take any priority vector and produce a
feasible (though generally sub-optimal) schedule. This
means that we can make local moves, including genetic
cross-over operations, without straying into infeasible
space (in contrast to methods that search in the space
of schedules which must work hard to maintain feasibil-
ity, or find ways to evaluate the goodness of infeasible
schedules). Second, if there are many possible times at
which observations can be scheduled it is often the case
that the space of possible permutations is significantly
smaller than the space of possible schedules.

Computational scheduling techniques have been ap-
plied to the EOS scheduling problem by several authors,
including:

1. Sherwood et al. (Sherwood et al. 1998) used AS-
PEN, a general purpose scheduling system, to auto-
mate NASA’s EO-1 satellite.

1We should note that proving optimality for a
permutation-based method in a domain requires a detailed
analysis of the constraints and optimization criterion of the
domain as well as the details of the greedy scheduler.

2. Potter and Gasch (Potter & Gasch 1998) described a
clever algorithm for scheduling the Landsat 7 satellite
featuring greedy search forward in time with fixup to
free resources for high priority images.

3. Lamaitre’s group has examined EOS scheduling is-
sues including sharing a single satellite among mul-
tiple users and comparing multiple techniques. See,
for example, (Lamaitre, Verfaillie, & Bataille 1998),
(Bensana, Lemaitre, & Verfaillie 1999) and (Lamaitre
et al. 2000).

4. Wolfe and Sorensen (Wolfe & Sorensen 2000) com-
pared three algorithms, including the genetic algo-
rithm, on the window-constrained packing problem,
which is related to EOS scheduling. They found that
the genetic algorithm produced the best schedules,
albeit at a significant CPU cost.

This study compares thirteen EOS scheduling tech-
niques on a realistically-sized model problem. In par-
ticular, we compare simulated annealing, hill climbing,
the genetic algorithm, squeaky wheel optimization, and
iterated sampling (ISAMP). In the next section we de-
scribe the scheduling problem and our model. A de-
scription of the scheduling techniques follows. The na-
ture and results of our computational experiments are
then presented along with analysis.

EOS Scheduling Problem
In this section we first describe the EOS scheduling
problem as perceived by satellite operators and devel-
opers. Then we describe the model of the problem used
in this experiment.

EOS scheduling attempts to take as many high-
priority observations as possible within a fixed period
of time on a fixed set of satellite-born sensors. For ex-
ample, the Landsat 7 satellite scheduler is considered to
have done a good job if 250 observations are made each
day. There are generally far more than 250 observation
requests. EOS scheduling is complicated by a number
of important constraints. Potin (Potin 1998) lists some
of these constraints as:

1. Revisit limitations. A target must be within sight of
the satellite; and EOS satellites travel in fixed orbits,
usually about 800 km up and 100 minutes per orbit.
These orbits pass over any particular place on Earth
at limited times so there are only a few observation
windows (and sometimes none) for a given target.

2. Time required to take each image. Most Earth ob-
serving satellites take a one dimensional image and
use the spacecraft‘s orbital motion to sweep out the
area to be imaged. For example, a Landsat image
requires 24 seconds of orbital motion.

3. Limited on-board data storage. Images are typically
stored on a solid state recorder (SSR) until they can
be sent to the ground.

4. Ground station availability. The data in the SSR
is sent to the ground (called SSR dumps) when the

satellite passes over a ground station. Ground station
windows are limited as with any other target.

5. Transition time between look angles (slewing). Some
instruments are mounted on motors that can point
side-to-side (cross-track).

6. Power and thermal control.

7. Coordination of multiple satellites.

8. Cloud cover. Some sensors cannot see through
clouds. Not only do clouds cover much of the Earth
at any given time, but some locations are nearly al-
ways cloudy.

9. Stereo pair acquisition or multiple observations of the
same target by different sensors or the same sensor
at different times.

Our model problems implements all these constraints
except the last two. Both model problem consists
of three satellites in Sun-synchronous orbits (orbits in
which the equator is crossed at the same local time each
orbit) for one week. The satellites are spaced ten min-
utes apart. Each satellite carries one sensor mounted
on a cross-track slewable motor that can point up to 24
degrees to either side of nadir (nadir is straight down)
and turns one degree in two seconds. In problem one,
each satellite has an SSR capable of storing 50 arbitrary
units. In problem two, the SSR stores 75 units.

We model power and thermal constraints using so
called duty cycle constraints, the approach taken by
NASA’s Landsat 7 satellite. A duty cycle constraint
requires that the sensor not be turned on for longer
that a maximum time within any interval of a certain
length. This insures conformance with power, thermal,
and other physical constraints on the spacecraft. Our
model problem uses the Landsat 7 duty cycles. Specif-
ically, a sensor may not be used for more than:

1. 34 minutes in any 100 minute period,

2. 52 minutes in any 200 minute period, or

3. 131 minutes in any 600 minute period.

There is one ground station in Alaska. Whenever a
satellite comes within sight of the ground station it is
assumed to completely empty it‘s SSR, which is then
available for additional observation storage. There are
approximately 75 SSR dumps per spacecraft during the
week. Since some orbits are over oceans and all targets
are on land, some SSR dump opportunities are wasted
on an empty SSR.

6300 observation targets were randomly generated on
land. Of these, 6114 were observable by at least one
satellite during the one week scheduling period. The
targets are assumed to be at the center of a rectangle
that requires 24 seconds of satellite motion to image.
Each observation requires one, three, or five arbitrary
storage units (evenly distributed) on the SSR. Each ob-
servation was assigned a priority from one to six evenly
spaced in 0.1 increments. Each observation has 2-24
windows, times when a satellite is within view of the

observation‘s target. Orbits and windows were deter-
mined by the free version of the Analytical Graphics
Inc.’s Satellite Tool Kit, also known as the STK (see
www.stk.com).

The fitness (quality) of each schedule is determined
by a weighted sum (smaller numbers indicate better
fitness):

F = wp

∑
Ou

Po + wsS + waA (1)

where F is the fitness, Ou is the set of unscheduled ob-
servation, Po is the priority of an observation, S is the
total time spent slewing, A is the sum of the off-nadir
pointing angle for all scheduled observations, w stands
for weight, wp = 1, ws = 0.01, and wa = 0.00137 for
problem one and wa = 0.02 for problem two. Note
that the weights favor the priority of unscheduled ob-
servations over pointing and slewing time objectives,
and that the off-nadir pointing objective has very lit-
tle influence on problem one. ws is set so that adding
an observation always increases fitness, but just barely
for a Po = 1 observation. wa in problem two is set
similarly.

There only two differences between the model prob-
lems: problem two has more SSR space and the off-
nadir pointing objective is much more important. Addi-
tional SSR space implies that the duty cycle constraint
will become more important.

Scheduling Techniques
This study compares thirteen search techniques applied
to the EOS scheduling problem. The simplest tech-
niques were simulated annealing, hill climbing, two vari-
ants of the genetic algorithm, and ISAMP (essentially
random search) taking random steps. By using a more
intelligent mutation operator, these algorithms (except
ISAMP) become variants of squeaky wheel optimization
(Joslin & Clements 1999).

We represent a schedule as a permutation or arbi-
trary, non-temporal ordering of the observations. The
observations are scheduled one at a time in the order
indicated by the permutation. In psuedo-code:
1. int[] permutation = permutation of the integers 1-

numberOfObservations
2. for(int i = i; i != numberOfObservations; i++)
(a) schedule observation permutation[i] if it does not

violate any constraints
This allows us to search in permutation space (Syswerda
& Palmucci 1991) rather than schedule space, as is
somewhat more common. DISCUSS A simple, deter-
ministic, one-observation scheduler assigns resources to
observations in the order indicated by the permuta-
tion. This produces a set of timelines with all of the
scheduled observations, the time they were taken, and
the resources (SSR, sensor, pointing angle) used. The
one-observation scheduler assigns times and resources
to observations using earliest-first scheduling heuristics

while maintaining consistency with sensor availability,
onboard memory (SSR) and slewing constraints. If an
observation cannot be scheduled without violating the
current constraints (those created by scheduling obser-
vations from earlier in the permutation), the observa-
tion is left unscheduled.

Simple earliest-first scheduling starting at time = 0
had some problems. We discovered that the algo-
rithm works better if, for each observation, ’earliest-
first’ starts at some random initial time rather than
at time = 0. This time is, in general, different for
each observation. If the observation cannot be sched-
uled between the initial time the end of time, the al-
gorithm starts at time = 0 and continues searching for
a constraint-free window until the observation is sched-
uled or the initial time is reached. The time each ob-
servation is scheduled (or, if unscheduled, what time
’earliest-first’ search started) is stored along with the
permutation, is preserved by mutation and crossover,
and is used as the starting point for the one-observation
scheduler operating on modified versions of the current
permutation. The extra scheduling flexibility may ex-
plain why this approach works better than earliest-first
starting at time = 0.

Constraints are enforced by representing sensors,
slew-motors and SSRs as timelines. Scheduling an ob-
servation causes timelines to take on appropriate values
(i.e., in use for a sensor, slew motor setting, amount of
SSR memory available) at different times. These time-
lines are checked for constraint violations as the one-
observation scheduler attempts to schedule additional
observations.

The simplest algorithm tested was ISAMP, which is
essentially a random search. With ISAMP, each sched-
ule is generated from a random permutation with ran-
dom start times for the one-observation scheduler.

The next class of algorithms tested were the ’evo-
lutionary’ search techniques, which we define here as
those that start with random permutations and gener-
ate new permutations with mutation and/or crossover.
Unlike ISAMP, these algorithms learn in the sense that
they use past experience and gradually improve the
schedules generated. The algorithms tested were:

1. Stochastic hill climbing (Hc), which starts with a sin-
gle randomly generated permutation. This permuta-
tion (the parent) is repeatedly mutated to produce
one new permutation (a child) which, if the child rep-
resents a more fit schedule than the parent, it replaces
the parent.

2. Simulated annealing (Sa), which is similar to hill
climbing except less fit children can replace the par-
ent with a probability that the depends on an ar-
tificial temperature. The temperature starts at 100
(arbitrary units) and is multiplied by 0.92 every 1000
children (100,000 children are generated per run).

3. A steady-state tournament selection genetic algo-
rithm (Gs) with population size 100. The individual
to replace is chosen by a tournament from the whole

population where the least fit is replaced. Tourna-
ment size is always two.

4. A generational elitist genetic algorithm (Gg) with
population size is 110 where the 10 best individu-
als are copied into the next generation. Parents are
chosen by tournament (size = 2).

Each search technique was tested with three mutation
operators:

1. Random swap (Rs). Two permutation locations are
chosen at random and the observations are swapped,
with 1-15 swaps (chosen at random) per mutation.
Earlier experiments (Globus et al. 2003) determined
that allowing more than one swap improved schedul-
ing (see Table 3).

2. Temperature-dependent swap (Td). Here the num-
ber of swaps (1-15) is still chosen at random but with
a bias. Early in evolution a larger number of swaps
tend to be used, and later in evolution fewer swaps are
performed. This is analogous to the ’temperature’ de-
pendent behavior of simulated annealing. The choice
of the number of swaps is determined by a weighted
roulette wheel where the weights vary linearly as evo-
lution proceeds starting at n and ending at 16 − n
where n is the number of swaps. Earlier experiments
tried fewer swaps early in evolution and more swaps
later. This didn’t work as well.

3. Squeaky shift (Ss). This mutation operator imple-
ments squeaky wheel optimization. The mutator
shifts 1-15 (chosen randomly) ’deserving’ observa-
tions earlier in the permutation. Early in the permu-
tation an observation is more likely to be scheduled
since fewer other observations will have been sched-
uled to create additional constraints. Each observa-
tion to shift forward is chosen by a tournament of size
50, 100, 200, or 300 (chosen at random each time).
The observation is always chosen from the last half of
the permutation. The position-to-shift-in-front-of is
chosen by a tournament of the same size (each time)
and is guarrenteed to be at a location at least half
way to the front of the permutation (starting at the
’deserving’ observation). The observation most de-
serving to move earlier in the permutation is deter-
mined by the following characteristics (in order):

(a) unscheduled rather than scheduled
(b) higher priority
(c) later in the permutation

The position-to-shift-in-front-of tournament looks for
the opposite characteristics.

In the case of the genetic algorithms half of all chil-
dren are created by mutation and the other half by
crossover. The crossover operator is position-based
crossover (Syswerda & Palmucci 1991). Roughly half of
the permutation positions are chosen at random (50%
probability per position). The observations in these po-
sitions are copied from the father to the same permuta-
tion location in the child. The remaining observations

fill in the child‘s other permutation positions in the or-
der they appear in the mother.

We have tested a number of other mutation operators
but the ones examined in this experiment performed
the best. See (Globus et al. 2003) and Table 3 for some
of these data. We also tested heuristic-biased stochas-
tic sampling (HBSS) (Bresina 1996) with contention
heuristics (Frank et al. 2002), a technique that operates
in schedule space rather than permutation space. HBSS
was hundreds of times slower, required far more mem-
ory, and produced schedules barely better than ISAMP.
There are many techniques that search schedule space
and these results are not sufficient to make any sweeping
conclusions comparing permutation space and schedule
space search.

Experiment
To find the best algorithm for the model problems we
compared a total of thirteen techniques. These were
ISAMP, and every combination of four search tech-
niques – hill climbing, simulated annealing, steady state
GA, and generational GA – with three mutation opera-
tors – 1-15 random swaps, 1-15 temperature dependent
swaps, and 1-15 squeaky shifts. Thirty-two jobs with
identical parameters (except the random number seed)
were run for each algorithm. Each job generated ap-
proximately 100,000 schedules (the GA runs generated
slightly more). On one Athlon processor of our Linux
cluster these jobs took 2-3 hours each.

Table 1 compares the algorithms for problem 1 and
table 2 for problem 2. In both tables (and the fig-
ures) the techniques are ordered by the mean fitness
for problem 1. Most, although not all, of the differ-
ences were statistically significant by both t-test and
ks-test, with confidence levels usually far above 99%.
For the most part, the ordering is similar regardless
of fitness objective (priority, slewing time, or off-nadir
pointing), although there are some exceptions. Table 3
shows similar results with slightly different techniques
on a smaller but related problem. We have had similar
results on other problems as well.

Simulated annealing is the clear winner for all prob-
lems. For problem one hill climbing with temperature
depended swaps equals simulated annealing with ran-
dom swaps, but on problem one simulated annealing al-
ways wins. Even hill climbing outperforms both forms
of the genetic algorithm and this is true regardless of
mutation operator. ISAMP, as one might expect for
random search, performed the worst.

For simulated annealing and hill climbing the temper-
ature dependent swap outperforms all other mutation
operators, although for the genetic algorithms random
swaps outperforms temperature depended swaps. Both
random swap and temperature dependent swaps clearly
outperform squeaky shifts for all search techniques.

The small standard deviations for all techniques sug-
gests that all runs for a given technique get about the
same fitness. Thus, even if the fitness landscape is
multi-modal all the minima must be about the same.

Figures 1 and 2, which show the breadth of each fitness
distribution over 32 runs, confirms this view. For this
reason, we suspect that this problem requires mostly ex-
ploitation, rather than exploration, which also explains
the poor GA results. Evolutionary change is spread out
over the GA populations rather than concentrated on
a single individual as for simulated annealing and hill
climbing.

The squeaky shift mutator‘s performance relative to
random swaps suggests that it is smart in the wrong
way. In preliminary experiments we also tried swap-
ping, rather than shifting, observations and forcing ob-
servations to be swapped into certain parts of the per-
mutation (see Table 3). The shift operator performed
the best, but still not as well as the random swap mu-
tator. If random outperforms intelligent, then clearly
the intelligence is being applied in the wrong way. We
do not understand the dynamics of permutation-space
scheduling in any fundamental way, and we don’t even
know if the dynamics are fundamentally similar for
different problems. Until a better understanding is
reached, the random swap operators – with a decrease
in the number of swaps as evolution proceeds – appear
best.

Figures 3 and 4 show the effect of changing wa from
to 0.00137 in problem one to 0.2 in problem 2. The
absolute value of the off-nadir pointing is reduced as
the weight increases, and the range of values is greatly
reduced, suggesting that the pointing objective is im-
portant enough to affect the search.

Summary

We compared thirteen different permutation-space
search techniques for scheduling EOS fleets on a
realistically-sized model problem. Simulated anneal-
ing outperformed hill climbing which, in turns, outper-
formed the genetic algorithm. Simple random swap mu-
tation outperformed more ’intelligent’ mutation. Re-
ducing the number of random swaps as evolution pro-
ceeds improved performance further. Although we ex-
amined only two, closely related problems here, we have
seen essentially the same results on other problems in
this class.

An important follow-up to our work would be an
equally thorough study of non-permutation methods;
that is methods that search in the space of all possi-
ble schedules. We examined one candidate, HBSS with
contention heuristics, which performed very poorly. We
conjecture that the simplicity of local search in permu-
tation space (particularly the fact that we do not need
to search in infeasible space) will lead permutation-
based methods to dominate on many oversubscrip-
tion problems. However, this conjecture can only
be evaluated by a head-to-head comparison of the
best permutation-based and schedule-based search ap-
proaches.

Acknowledgements
This work was funded by NASA’s Computing, In-
formation, & Communications Technology Program,
Advanced Information Systems Technology Program
(contract AIST-0042), and by the Intelligent Sys-
tems Program. Thanks also to Bonnie Klein for re-
viewing this paper and to Jennifer Dungan, Jeremy
Frank, Robert Morris and David Smith for many help-
ful discussions. Finally, thanks to the developers of
the excellent Colt open source libraries for high per-
formance scientific and technical computing in Java
(http://hoschek.home.cern.ch/hoschek/colt).

References
Bensana, E.; Lemaitre, M.; and Verfaillie, G. 1999.
Earth observation satellite management. Constraints
4(3):293–399.
Bresina, J. 1996. Heuristic-biased stochastic sampling.
In Proceedings of the Thirteenth National Conference
on Artificial Intelligence.
Frank, J.; Jonsson, A.; Morris, R.; and Smith, D. 2002.
Planning and scheduling for fleets of earth observing
satellites. In Proceedings of the 6th International Sym-
posium on Artificial Intelligence, Robotics, Automa-
tion and Space 2002.
Globus, A.; Crawford, J.; Lohn, J.; and Morris, R.
2002. Scheduling earth observing fleets using evo-
lutionary algorithms: Problem description and ap-
proach. In Proceedings of the 3rd International NASA
Workshop on Planning and Scheduling for Space.
Globus, A.; Crawford, J.; Lohn, J.; and Pryor, A.
2003. Scheduling earth observing satellites with evo-
lutionary algorithms. In Conference on Space Mission
Challenges for Information Technology (SMC-IT).
Joslin, D. E., and Clements, D. P. 1999. Squeaky
wheel optimization. Journal of Artificial Intelligence
Research 10:353–373.
Lamaitre, M.; Verfaillie, G.; Frank, J.; Lachiver, J.;
and Bataille, N. 2000. How to manage the new gen-
eration of agile earth observation satellites. In Pro-
ceedings of the International Symposium on Artificial
Intelligence, Robotics and Automation in Space.
Lamaitre, M.; Verfaillie, G.; and Bataille, N. 1998.
Sharing the use of a satellite: an overview of methods.
In SpaceOps 1998.
Potin, P. 1998. End-to-end planning approach for
earth observation mission exploitation. In SpaceOps
1998.
Potter, W., and Gasch, J. 1998. A photo album of
earth: Scheduling landsat 7 mission daily activities.
In SpaceOps 1998.
Rao, J. D.; Soma, P.; and Padmashree, G. S. 1998.
Multi-satellite scheduling system for leo satellite oper-
ations. In SpaceOps 1998.
Sherwood, R.; Govindjee, A.; Yan, D.; Rabideau, G.;
Chien, S.; and Fukunaga, A. 1998. Using aspen to

automate eo-1 activity planning. In Proceedings of the
1998 IEEE Aerospace Conference.
Syswerda, G., and Palmucci, J. 1991. The applica-
tion of genetic algorithms to resource scheduling. In
Proceedings of the Fourth International Conference on
Genetic Algorithms, 502–508.
Wolfe, W. J., and Sorensen, S. E. 2000. Three schedul-
ing algorithms applied to the earth observing systems
domain. Management Science 46(1):148–168.

algorithm F (fitness) F StdDev
∑

Ou
Po (priority) S/|Ou| (slewing) A/|Ou| (pointing) |Ou| (unscheduled)

SaTd 9205 20 8571 17 10.1 2211
HcTd 9310 21 8659 18 10.3 2289
SaSr 9311 19 8662 18 10.2 2250
HcSr 9368 25 8716 18 10.3 2313
SaSs 9489 19 8872 19 10.4 2583
HcSs 9507 24 8865 19 10.4 2512
GgSr 9700 38 9017 20 10.3 2430
GsSr 9700 25 9019 20 10.4 2430
GsTd 9741 31 9049 20 10.5 2428
GgTd 9834 24 9130 20 10.5 2458
GgSs 9964 53 9281 21 10.5 2652
GsSs 10010 46 9330 21 10.4 2673

ISAMP 10463 11 9727 23 10.7 2723

Table 1: Scheduling algorithms tested ordered by mean fitness for 32 jobs on problem 1. All values are means except
column 3. Smaller values are best. Column heading labels refer to equation 1. SA stands for simulated annealing,
HC for hill climbing, Gs for steady-state GA, Gg for generational GA, Rs for random swaps, Td for temperature
dependent swaps, and Ss for squeaky shifts.

algorithm F (fitness) F StdDev
∑

Ou
Po (priority) S/|Ou| (slewing) A/|Ou| (pointing) |Ou| (unscheduled)

SaTd 5571 23 3954 16 9.5 1118
SaSr 5648 22 4009 17 9.6 1125
SaSs 5786 29 4163 18 9.9 1332
HcTd 5870 28 4237 18 9.7 1246
HcSr 5913 36 4273 18 9.6 1258
HcSs 6032 38 4419 18 9.8 1421
GgSr 6306 45 4640 19 10.0 1371
GsSr 6317 44 4646 19 10.0 1375
GsTd 6340 35 4642 19 10.1 1351
GgTd 6489 39 4782 20 10.2 1399
GgSs 6735 66 5088 21 10.2 1615
GsSs 6839 78 5185 21 10.3 1638

ISAMP 7797 12 6124 23 10.6 1774

Table 2: Same as table 1 except data (and ordering) from problem 2.

search algorithm transmission operators mean fitness
Sa 1-9 Rs 2171
Sa 1 Rs 2354

Hc 5 restarts 1-9 Rs 2539
Hc 5 restarts 1 Rs 2564
Hc 0 restarts 1 Rs 2575

Sa 1 squeaky swap 2772
Sa 1 placed squeaky swap 2814
Hc 1 squeaky swap 2868
Gs crossover and 1 Rs 3007

Table 3: Results from a somewhat different problem with a different, but related, set of search techniques. Note that
the overall results are similar. Here the problem has two satellites and 4000+ observations with SSR size, slewing
range and times, and other aspects different from the model that generated Table 1. Details can be found in (Globus
et al. 2003).

Figure 1: Comparing fitness (vertical axis) for 32 runs for experiment 1. The boxes indicate the second and third
quartiles. The line inside the box is the median and the whiskers are the extent of the data. Outliers are represented
by small circles. Smaller numbers indicate better fitness.

Figure 2: Same as figure 1 with data from experiment 2.

Figure 3: Mean off-nadir pointing angle needed for each scheduled observation (mean of A from Equation 1).

Figure 4: Same as figure 3 with data from experiment 2.

